IDEAS home Printed from https://ideas.repec.org/p/ukc/ukcedp/1607.html
   My bibliography  Save this paper

Estimation of social interaction models using regularization

Author

Listed:
  • Guy Tchuente

    ()

Abstract

In social interaction models, the identification of the network effect is based on either group size variation, structure of the network or the relative position in the network measured by the Bonacich centrality measure. These identification strategies imply the use of many instruments or instruments that are highly correlated. The use of highly correlated instruments may lead to the weak identification of the parameters while, in finite samples, the inclusion of an excessive number of moments increases the bias. This paper proposes regularized versions of the 2SLS and GMM as a solution to these problems. The regularization is based on three different methods: Tikhonov, Landweber Fridman, and Principal Components. The proposed estimators are consistent and asymptotically normal. A Monte Carlo study illustrates the relevance of the estimators and evaluates their finite sample performance.

Suggested Citation

  • Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
  • Handle: RePEc:ukc:ukcedp:1607
    as

    Download full text from publisher

    File URL: ftp://ftp.ukc.ac.uk/pub/ejr/RePEc/ukc/ukcedp/1607.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    2. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    3. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    4. Okui, Ryo, 2011. "Instrumental variable estimation in the presence of many moment conditions," Journal of Econometrics, Elsevier, vol. 165(1), pages 70-86.
    5. Xiaodong Liu & Lung-Fei Lee, 2013. "Two-Stage Least Squares Estimation of Spatial Autoregressive Models with Endogenous Regressors and Many Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 734-753.
    6. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    7. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    8. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    9. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    10. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    11. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    High-dimensional models; Social network; Identification; Spatial autoregressive model; GMM; 2SLS; regularization methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ukc:ukcedp:1607. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tracey Girling). General contact details of provider: http://www.kent.ac.uk/economics/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.