IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1210.3851.html
   My bibliography  Save this paper

An introduction to particle integration methods: with applications to risk and insurance

Author

Listed:
  • P. Del Moral
  • G. W. Peters
  • Ch. Verg'e

Abstract

Interacting particle methods are increasingly used to sample from complex and high-dimensional distributions. These stochastic particle integration techniques can be interpreted as an universal acceptance-rejection sequential particle sampler equipped with adaptive and interacting recycling mechanisms. Practically, the particles evolve randomly around the space independently and to each particle is associated a positive potential function. Periodically, particles with high potentials duplicate at the expense of low potential particle which die. This natural genetic type selection scheme appears in numerous applications in applied probability, physics, Bayesian statistics, signal processing, biology, and information engineering. It is the intention of this paper to introduce them to risk modeling. From a purely mathematical point of view, these stochastic samplers can be interpreted as Feynman-Kac particle integration methods. These functional models are natural mathematical extensions of the traditional change of probability measures, commonly used to design an importance sampling strategy. In this article, we provide a brief introduction to the stochastic modeling and the theoretical analysis of these particle algorithms. Then we conclude with an illustration of a subset of such methods to resolve important risk measure and capital estimation in risk and insurance modelling.

Suggested Citation

  • P. Del Moral & G. W. Peters & Ch. Verg'e, 2012. "An introduction to particle integration methods: with applications to risk and insurance," Papers 1210.3851, arXiv.org, revised Oct 2012.
  • Handle: RePEc:arx:papers:1210.3851
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1210.3851
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 12(01), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1210.3851. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.