IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1593-d1107127.html
   My bibliography  Save this article

Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension

Author

Listed:
  • Mohamed Ibrahim

    (Department of Applied, Mathematical and Actuarial Statistics, Faculty of Commerce, Damietta University, Damietta 34517, Egypt)

  • Walid Emam

    (Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Yusra Tashkandy

    (Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • M. Masoom Ali

    (Department of Mathematical Sciences, Ball State University, Muncie, IN 47306, USA)

  • Haitham M. Yousof

    (Department of Statistics, Mathematics and Insurance, Benha University, Benha 13518, Egypt)

Abstract

Continuous probability distributions can handle and express different data within the modeling process. Continuous probability distributions can be used in the disclosure and evaluation of risks through a set of well-known basic risk indicators. In this work, a new compound continuous probability extension of the reciprocal Rayleigh distribution is introduced for data modeling and risk analysis. Some of its properties including are derived. The estimation of the parameters is carried out via different techniques. Bayesian estimations are computed under gamma and normal prior. The performance and assessment of all techniques are studied and assessed through Monte Carlo experiments of simulations and two real-life datasets for applications. Two applications to real datasets are provided for comparing the new model with other competitive models and to illustrate the importance of the proposed model via the maximum likelihood technique. Numerical analysis for expected value, variance, skewness, and kurtosis are given. Five key risk indicators are defined and analyzed under Bayesian and non-Bayesian estimation. An extensive analytical study that investigated the capacity to reveal actuarial hazards used a wide range of well-known models to examine actuarial disclosure models. Using actuarial data, actuarial hazards were evaluated and rated.

Suggested Citation

  • Mohamed Ibrahim & Walid Emam & Yusra Tashkandy & M. Masoom Ali & Haitham M. Yousof, 2023. "Bayesian and Non-Bayesian Risk Analysis and Assessment under Left-Skewed Insurance Data and a Novel Compound Reciprocal Rayleigh Extension," Mathematics, MDPI, vol. 11(7), pages 1-26, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1593-:d:1107127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1593/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1593/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia Lynn Wirch, 1999. "Raising Value at Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 106-115.
    2. Philippe Artzner, 1999. "Application of Coherent Risk Measures to Capital Requirements in Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 11-25.
    3. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    4. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    5. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    6. Lane, Morton N., 2000. "Pricing Risk Transfer Transactions1," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 259-293, November.
    7. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thabani Ndlovu & Delson Chikobvu, 2023. "The Generalised Pareto Distribution Model Approach to Comparing Extreme Risk in the Exchange Rate Risk of BitCoin/US Dollar and South African Rand/US Dollar Returns," Risks, MDPI, vol. 11(6), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    2. Haitham M. Yousof & Walid Emam & Yusra Tashkandy & M. Masoom Ali & R. Minkah & Mohamed Ibrahim, 2023. "A Novel Model for Quantitative Risk Assessment under Claim-Size Data with Bimodal and Symmetric Data Modeling," Mathematics, MDPI, vol. 11(6), pages 1-31, March.
    3. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    4. Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
    5. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    6. Nada M. Alfaer & Ahmed M. Gemeay & Hassan M. Aljohani & Ahmed Z. Afify, 2021. "The Extended Log-Logistic Distribution: Inference and Actuarial Applications," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    7. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    8. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    9. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    10. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    11. Alessandro Staino & Emilio Russo & Massimo Costabile & Arturo Leccadito, 2023. "Minimum capital requirement and portfolio allocation for non-life insurance: a semiparametric model with Conditional Value-at-Risk (CVaR) constraint," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    12. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    13. Cossette, Hélène & Côté, Marie-Pier & Marceau, Etienne & Moutanabbir, Khouzeima, 2013. "Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 560-572.
    14. Landsman, Zinoviy, 2010. "On the Tail Mean-Variance optimal portfolio selection," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 547-553, June.
    15. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    16. Eini, Esmat Jamshidi & Khaloozadeh, Hamid, 2021. "The tail mean–variance optimal portfolio selection under generalized skew-elliptical distribution," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 44-50.
    17. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    18. Laurent Gardes & Stéphane Girard, 2021. "On the estimation of the variability in the distribution tail," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 884-907, December.
    19. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    20. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1593-:d:1107127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.