IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v28y2012i04p838-860_00.html
   My bibliography  Save this article

Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes

Author

Listed:
  • De Gregorio, Alessandro
  • Iacus, Stefano M.

Abstract

The least absolute shrinkage and selection operator (LASSO) is a widely used statistical methodology for simultaneous estimation and variable selection. It is a shrinkage estimation method that allows one to select parsimonious models. In other words, this method estimates the redundant parameters as zero in the large samples and reduces variance of estimates. In recent years, many authors analyzed this technique from a theoretical and applied point of view. We introduce and study the adaptive LASSO problem for discretely observed multivariate diffusion processes. We prove oracle properties and also derive the asymptotic distribution of the LASSO estimator. This is a nontrivial extension of previous results by Wang and Leng (2007, Journal of the American Statistical Association , 102(479), 1039–1048) on LASSO estimation because of different rates of convergence of the estimators in the drift and diffusion coefficients. We perform simulations and real data analysis to provide some evidence on the applicability of this method.

Suggested Citation

  • De Gregorio, Alessandro & Iacus, Stefano M., 2012. "Adaptive Lasso-Type Estimation For Multivariate Diffusion Processes," Econometric Theory, Cambridge University Press, vol. 28(04), pages 838-860, August.
  • Handle: RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466611000806
    File Function: link to article abstract page
    Download Restriction: no

    References listed on IDEAS

    as
    1. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(01), pages 158-170, February.
    2. Khan, Shakeeb & Lewbel, Arthur, 2007. "Weighted And Two-Stage Least Squares Estimation Of Semiparametric Truncated Regression Models," Econometric Theory, Cambridge University Press, vol. 23(02), pages 309-347, April.
    3. Zhenjuan Liu & Xuewen Lu & Zhenjuan Liu & Xuewen Lu, 1997. "Root-n-consistent semiparametric estimation of partially linear models based on k-nn method," Econometric Reviews, Taylor & Francis Journals, vol. 16(4), pages 411-420.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    5. Arthur Lewbel, 1998. "Semiparametric Latent Variable Model Estimation with Endogenous or Mismeasured Regressors," Econometrica, Econometric Society, vol. 66(1), pages 105-122, January.
    6. Boente, G. & Fraiman, R., 1995. "Asymptotic Distribution of Smoothers Based on Local Means and Local Medians under Dependence," Journal of Multivariate Analysis, Elsevier, vol. 54(1), pages 77-90, July.
    7. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    8. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    9. Bo E. Honore & Arthur Lewbel, 2002. "Semiparametric Binary Choice Panel Data Models Without Strictly Exogeneous Regressors," Econometrica, Econometric Society, vol. 70(5), pages 2053-2063, September.
    10. Robinson, P M, 1987. "Asymptotically Efficient Estimation in the Presence of Heteroskedasticity of Unknown Form," Econometrica, Econometric Society, vol. 55(4), pages 875-891, July.
    11. Lewbel, Arthur & Schennach, Susanne M., 2007. "A simple ordered data estimator for inverse density weighted expectations," Journal of Econometrics, Elsevier, vol. 136(1), pages 189-211, January.
    12. Lewbel, Arthur, 1997. "Semiparametric Estimation of Location and Other Discrete Choice Moments," Econometric Theory, Cambridge University Press, vol. 13(01), pages 32-51, February.
    13. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    14. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    15. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
    16. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    17. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    18. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", pages 125-132.
    19. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    20. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    21. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    22. Tran, L. T. & Yakowitz, S., 1993. "Nearest Neighbor Estimators for Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 23-46, January.
    23. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    24. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    25. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    26. Mack, Y. P. & Rosenblatt, M., 1979. "Multivariate k-nearest neighbor density estimates," Journal of Multivariate Analysis, Elsevier, vol. 9(1), pages 1-15, March.
    27. Delgado, Miguel A., 1992. "Semiparametric Generalized Least Squares in the Multivariate Nonlinear Regression Model," Econometric Theory, Cambridge University Press, vol. 8(02), pages 203-222, June.
    28. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    29. Severini, Thomas A. & Tripathi, Gautam, 2001. "A simplified approach to computing efficiency bounds in semiparametric models," Journal of Econometrics, Elsevier, vol. 102(1), pages 23-66, May.
    30. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    31. B. Prakasa Rao, 2009. "Conditional independence, conditional mixing and conditional association," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 441-460, June.
    32. Boente, Graciela & Fraiman, Ricardo, 1988. "Consistency of a nonparametric estimate of a density function for dependent variables," Journal of Multivariate Analysis, Elsevier, vol. 25(1), pages 90-99, April.
    33. Miguel A. Delgado & Thanasis Stengos, 1994. "Semiparametric Specification Testing of Non-nested Econometric Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 291-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:28:y:2012:i:04:p:838-860_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.