IDEAS home Printed from https://ideas.repec.org/p/sce/scecfa/185.html
   My bibliography  Save this paper

Computing the Distributions of Economic Models via Simulation

Author

Listed:
  • John Stachurski
  • University of Melbourne

Abstract

This paper studies a Monte Carlo algorithm for computing distributions of state variables when the underlying model is a Markov process. It is shown that the $L_1$ error of the estimator always converges to zero with probability one, and often at a parametric rate. A related technique for computing stationary distributions is also investigate

Suggested Citation

  • John Stachurski & University of Melbourne, 2006. "Computing the Distributions of Economic Models via Simulation," Computing in Economics and Finance 2006 185, Society for Computational Economics.
  • Handle: RePEc:sce:scecfa:185
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Angus Deaton & Guy Laroque, 1992. "On the Behaviour of Commodity Prices," Review of Economic Studies, Oxford University Press, vol. 59(1), pages 1-23.
    2. Esteban Rossi-Hansberg & Mark L. J. Wright, 2007. "Establishment Size Dynamics in the Aggregate Economy," American Economic Review, American Economic Association, vol. 97(5), pages 1639-1666, December.
    3. A. S. Hurn & K. A. Lindsay & V. L. Martin, 2003. "On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 45-63, January.
    4. Elerain, Ola & Chib, Siddhartha & Shephard, Neil, 2001. "Likelihood Inference for Discretely Observed Nonlinear Diffusions," Econometrica, Econometric Society, vol. 69(4), pages 959-993, July.
    5. Giorgio Valente & Lucio Sarno, 2004. "Comparing the accuracy of density forecasts from competing models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(8), pages 541-557.
    6. Johnson, Paul A., 2005. "A continuous state space approach to "Convergence by Parts"," Economics Letters, Elsevier, vol. 86(3), pages 317-321, March.
    7. Hansen, Bruce E., 2005. "Exact Mean Integrated Squared Error Of Higher Order Kernel Estimators," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1031-1057, December.
    8. Nishimura, Kazuo & Rudnicki, Ryszard & Stachurski, John, 2006. "Stochastic optimal growth with nonconvexities," Journal of Mathematical Economics, Elsevier, vol. 42(1), pages 74-96, February.
    9. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    10. Nishimura, Kazuo & Stachurski, John, 2005. "Stability of stochastic optimal growth models: a new approach," Journal of Economic Theory, Elsevier, vol. 122(1), pages 100-118, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Anton Braun & Huiyu Li & John Stachurski, 2011. "Generalized Look-Ahead Methods for Computing Stationary Densities," ANU Working Papers in Economics and Econometrics 2011-558, Australian National University, College of Business and Economics, School of Economics.
    2. Stephane Verani, 2018. "Aggregate Consequences of Dynamic Credit Relationships," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 44-67, July.
    3. Richard Anton Braun & Huiyu Li & John Stachurski, 2009. "Computing Densities: A Conditional Monte Carlo Estimator," CIRJE F-Series CIRJE-F-678, CIRJE, Faculty of Economics, University of Tokyo.
    4. Antunes, António & Cavalcanti, Tiago & Villamil, Anne, 2008. "Computing general equilibrium models with occupational choice and financial frictions," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 553-568, July.
    5. repec:eee:macchp:v2-527 is not listed on IDEAS
    6. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, Elsevier.
    7. Vance Martin & Yoshihiko Nishiyama & John Stachurski, 2011. "A Goodness of Fit Test for Ergodic Markov Processes," ANU Working Papers in Economics and Econometrics 2011-557, Australian National University, College of Business and Economics, School of Economics.
    8. Stephane Verani, 2018. "Aggregate Consequences of Dynamic Credit Relationships," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 29, pages 44-67, July.
    9. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, January.
    10. Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.

    More about this item

    Keywords

    Distributions; Markov processes; simulation;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:185. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.