IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Comparing the Accuracy of Density Forecasts from Competing Models

Listed author(s):
  • Sarno, Lucio
  • Valente, Giorgio

A rapidly growing literature emphasizes the importance of evaluating the forecast accuracy of empirical models on the basis of density (as opposed to point) forecasting performance. We propose a test statistic for the null hypothesis that two competing models have equal density forecast accuracy. Monte Carlo simulations suggest that the test, which has a known limiting distribution, displays satisfactory size and power properties. The use of the test is illustrated with an application to exchange rate forecasting. Copyright © 2004 John Wiley & Sons, Ltd.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2002 with number 223.

as
in new window

Length:
Date of creation: 01 Jul 2002
Handle: RePEc:sce:scecf2:223
Contact details of provider: Web page: http://www.cepremap.cnrs.fr/sce2002.html/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
  2. Kenneth Rogoff, 1996. "The Purchasing Power Parity Puzzle," Journal of Economic Literature, American Economic Association, vol. 34(2), pages 647-668, June.
  3. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643.
  4. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
  5. Wallis, Kenneth F., 2003. "Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts," International Journal of Forecasting, Elsevier, vol. 19(2), pages 165-175.
  6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
  7. Lucio Sarno & Mark P. Taylor, 2002. "Purchasing Power Parity and the Real Exchange Rate," IMF Staff Papers, Palgrave Macmillan, vol. 49(1), pages 1-5.
  8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
  9. Sarno, Lucio & Valente, Giorgio, 2005. "Empirical exchange rate models and currency risk: some evidence from density forecasts," Journal of International Money and Finance, Elsevier, vol. 24(2), pages 363-385, March.
  10. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
  11. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
  12. Fuchun Li & Greg Tkacz, 2001. "A Consistent Bootstrap Test for Conditional Density Functions with Time-Dependent Data," Staff Working Papers 01-21, Bank of Canada.
  13. Corker, R. J. & Holly, S. & Ellis, R. G., 1986. "Uncertainty and forecast precision," International Journal of Forecasting, Elsevier, vol. 2(1), pages 53-53.
  14. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
  15. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:sce:scecf2:223. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.