IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf181.html
   My bibliography  Save this paper

Computing Densities: A Conditional Monte Carlo Estimator

Author

Listed:
  • Richard Anton Braun

    (Faculty of Economics, University of Tokyo)

  • Huiyu Li

    (Graduate School of Economics, University of Tokyo)

  • John Stachurski

    (Institute of Economic Research, Kyoto University)

Abstract

We propose a generalized conditional Monte Carlo technique for computing densities in economic models. Global consistency and functional asymptotic normality are established under ergodicity assumptions on the simulated process. The asymptotic normality result allows us to characterize the asymptotic distribution of the error in density space, and implies faster convergence than nonparametric kernel density estimators. We show that our results nest several other well-known density estimators, and illustrate potential applications.

Suggested Citation

  • Richard Anton Braun & Huiyu Li & John Stachurski, 2009. "Computing Densities: A Conditional Monte Carlo Estimator," CARF F-Series CARF-F-181, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf181
    as

    Download full text from publisher

    File URL: https://www.carf.e.u-tokyo.ac.jp/old/pdf/workingpaper/fseries/187.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shane G. Henderson & Peter W. Glynn, 2001. "Computing Densities for Markov Chains via Simulation," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 375-400, May.
    2. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    3. S. Rao Aiyagari, 1994. "Uninsured Idiosyncratic Risk and Aggregate Saving," The Quarterly Journal of Economics, Oxford University Press, vol. 109(3), pages 659-684.
    4. John Stachurski & Vance Martin, 2008. "Computing the Distributions of Economic Models via Simulation," Econometrica, Econometric Society, vol. 76(2), pages 443-450, March.
    5. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
    6. Lars Peter Hansen & Thomas J. Sargent, 2007. "Introduction to Robustness," Introductory Chapters, in: Robustness, Princeton University Press.
    7. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    8. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Anton Braun & Huiyu Li & John Stachurski, 2012. "Generalized Look-Ahead Methods for Computing Stationary Densities," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 489-500, August.
    2. R. Anton Braun & Huiyu Li & John Stachurski, 2011. "Generalized Look-Ahead Methods for Computing Stationary Densities," ANU Working Papers in Economics and Econometrics 2011-558, Australian National University, College of Business and Economics, School of Economics.
    3. Richard Anton Braun & Huiyu Li & John Stachurski, 2009. "Computing Densities and Expectations in Stochastic Recursive Economies: Generalized Look-Ahead Techniques," CIRJE F-Series CIRJE-F-620, CIRJE, Faculty of Economics, University of Tokyo.
    4. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    5. Azariadis, Costas & Stachurski, John, 2005. "Poverty Traps," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 1, chapter 5, Elsevier.
    6. Angeletos, George-Marios & Calvet, Laurent-Emmanuel, 2005. "Incomplete-market dynamics in a neoclassical production economy," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 407-438, August.
    7. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    8. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    9. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, September.
    10. Athreya, Kartik B., 2014. "Big Ideas in Macroeconomics: A Nontechnical View," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262019736, September.
    11. Angeletos, George-Marios & Calvet, Laurent-Emmanuel, 2006. "Idiosyncratic production risk, growth and the business cycle," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1095-1115, September.
    12. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.
    13. Manjira Datta & Leonard Mirman & Olivier Morand & Kevin Reffett, 2002. "Monotone Methods for Markovian Equilibrium in Dynamic Economies," Annals of Operations Research, Springer, vol. 114(1), pages 117-144, August.
    14. Heejoon Han & Eunhee Lee, 2020. "Triple Regime Stochastic Volatility Model with Threshold and Leverage Effects," Korean Economic Review, Korean Economic Association, vol. 36, pages 481-509.
    15. Nikolaus Hautsch & Yangguoyi Ou, 2008. "Discrete-Time Stochastic Volatility Models and MCMC-Based Statistical Inference," SFB 649 Discussion Papers SFB649DP2008-063, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    16. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    17. George-Marios Angeletos & Laurent E. Calvet, 2001. "Incomplete Markets, Growth, and the Business Cycle," Harvard Institute of Economic Research Working Papers 1910, Harvard - Institute of Economic Research.
    18. Manjira Datta & Leonard Mirman & Olivier F. Morand & Kevin Reffett, 2001. "Monotone Methods for Distorted Economies," Working papers 2001-03, University of Connecticut, Department of Economics.
    19. Tsionas, Mike G., 2017. "A non-iterative (trivial) method for posterior inference in stochastic volatility models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 83-87.
    20. Eunhee Lee & Doo Bong Han & Rodolfo M. Nayga, 2017. "A common factor of stochastic volatilities between oil and commodity prices," Applied Economics, Taylor & Francis Journals, vol. 49(22), pages 2203-2215, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf181. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/catokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.