IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Computationally-intensive Econometrics using a Distributed Matrix-programming Language

This paper reviews the need for powerful facilities in econometrics, focusing on concrete problems which arise in financial economics and in macroeconomics. We argue that the profession is being held back by the lack of easy to use generic software which is able to exploit the availability of cheap clusters of distributed computers. Our response is to extend, in a number of directions, the well known matrix-programming interpreted language Ox developed by the first author. We note three possible levels of extensions: (i) Ox with parallelization explicit in the Ox code; (ii) Ox with a parallelized run-time library; (iii) Ox with a parallelized interpreter. This paper studies and implements the first case, emphasizing the need for deterministic computing in science. We give examples in the context of financial economics and time-series modelling.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nuff.ox.ac.uk/economics/papers/2001/w22/hpc20013.pdf
Download Restriction: no

Paper provided by Economics Group, Nuffield College, University of Oxford in its series Economics Papers with number 2001-W22.

as
in new window

Length: 23 pages
Date of creation:
Handle: RePEc:nuf:econwp:0122
Contact details of provider: Web page: https://www.nuffield.ox.ac.uk/economics/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
  2. Vassilis A. Hajivassiliou & Paul A. Ruud, 1993. "Classical Estimation Methods for LDV Models Using Simulation," Cowles Foundation Discussion Papers 1051, Cowles Foundation for Research in Economics, Yale University.
  3. Neil R. Ericsson & James G. MacKinnon, 2000. "Distributions of Error Correction Tests for Cointegration," Econometric Society World Congress 2000 Contributed Papers 0561, Econometric Society.
  4. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
  5. Ola Elerian & Siddhartha Chib & Neil Shephard, 2000. "Likelihood inference for discretely observed non-linear diffusions," OFRC Working Papers Series 2000mf02, Oxford Financial Research Centre.
  6. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
  7. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  8. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-692, December.
  9. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, December.
  10. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.
  11. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  12. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  13. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 153-173, Suppl. De.
  14. Nielsen, B., 1995. "Bartlett Correction of the Unit Root test in Autoregressive Models," Economics Papers 98, Economics Group, Nuffield College, University of Oxford.
  15. Phillips, Peter C.B., 1985. "Professor J. D. Sargan," Econometric Theory, Cambridge University Press, vol. 1(01), pages 119-139, April.
  16. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
  17. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-276, March.
  18. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  19. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  20. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  21. Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
  22. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1993. "The Method of Simulated Scores for the Estimation of LDV Models," Working Papers _023, Yale University.
  23. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  24. A. Abdelkhalek, A. Bilas and A. Michaelides, 2001. "Parallelization and Performance of Portfolio Choice Models," Computing in Economics and Finance 2001 114, Society for Computational Economics.
  25. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  26. Phillips, Peter C. B., 1986. "Proffessor T.W. Anderson," Econometric Theory, Cambridge University Press, vol. 2(02), pages 249-288, August.
  27. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976 Elsevier.
  28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  29. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  30. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  31. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
  32. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
  33. Doornik, Jurgen A, 1998. " Approximations to the Asymptotic Distributions of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
  34. Hendry, David F., 1976. "The structure of simultaneous equations estimators," Journal of Econometrics, Elsevier, vol. 4(1), pages 51-88, February.
  35. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0122. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.