IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Computationally-intensive Econometrics using a Distributed Matrix-programming Language

This paper reviews the need for powerful facilities in econometrics, focusing on concrete problems which arise in financial economics and in macroeconomics. We argue that the profession is being held back by the lack of easy to use generic software which is able to exploit the availability of cheap clusters of distributed computers. Our response is to extend, in a number of directions, the well known matrix-programming interpreted language Ox developed by the first author. We note three possible levels of extensions: (i) Ox with parallelization explicit in the Ox code; (ii) Ox with a parallelized run-time library; (iii) Ox with a parallelized interpreter. This paper studies and implements the first case, emphasizing the need for deterministic computing in science. We give examples in the context of financial economics and time-series modelling.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nuff.ox.ac.uk/economics/papers/2001/w22/hpc20013.pdf
Download Restriction: no

Paper provided by Economics Group, Nuffield College, University of Oxford in its series Economics Papers with number 2001-W22.

as
in new window

Length: 23 pages
Date of creation:
Date of revision:
Handle: RePEc:nuf:econwp:0122
Contact details of provider: Web page: http://www.nuff.ox.ac.uk/economics/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  3. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
  4. Jurgen A. Doornik, 1998. "Approximations To The Asymptotic Distributions Of Cointegration Tests," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 573-593, December.
  5. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
  6. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, 06.
  7. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441 Elsevier.
  8. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, March.
  9. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
  10. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976 Elsevier.
  11. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  13. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1993. "The Method of Simulated Scores for the Estimation of LDV Models," Working Papers _023, Yale University.
  14. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
  15. Neil Shephard & Michael K Pitt, 1995. "Likelihood analysis of non-Gaussian parameter driven models," Economics Papers 15 & 108., Economics Group, Nuffield College, University of Oxford.
  16. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  17. Elerian, O. & Chib, S. & Shephard, N., 1998. "Likelihood INference for Discretely Observed Non-linear Diffusions," Economics Papers 146, Economics Group, Nuffield College, University of Oxford.
  18. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S63-84, Suppl. De.
  19. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
  20. Chong, Yock Y & Hendry, David F, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Wiley Blackwell, vol. 53(4), pages 671-90, August.
  21. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  22. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  23. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S153-73, Suppl. De.
  24. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
  25. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  26. Bent Nielsen, 1995. "Bartlett correction of the unit root test in autoregressive models," Economics Papers 11 & 98., Economics Group, Nuffield College, University of Oxford.
  27. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  28. Hendry, David F., 1976. "The structure of simultaneous equations estimators," Journal of Econometrics, Elsevier, vol. 4(1), pages 51-88, February.
  29. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  30. Phillips, Peter C. B., 1986. "Proffessor T.W. Anderson," Econometric Theory, Cambridge University Press, vol. 2(02), pages 249-288, August.
  31. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, March.
  32. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  33. Davidson, James E H, et al, 1978. "Econometric Modelling of the Aggregate Time-Series Relationship between Consumers' Expenditure and Income in the United Kingdom," Economic Journal, Royal Economic Society, vol. 88(352), pages 661-92, December.
  34. Phillips, Peter C.B., 1985. "Professor J. D. Sargan," Econometric Theory, Cambridge University Press, vol. 1(01), pages 119-139, April.
  35. A. Abdelkhalek, A. Bilas and A. Michaelides, 2001. "Parallelization and Performance of Portfolio Choice Models," Computing in Economics and Finance 2001 114, Society for Computational Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0122. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maxine Collett)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.