IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/0416.html
   My bibliography  Save this paper

Parallel Computation in Econometrics: A Simplified Approach

Author

Listed:
  • Jurgen A. Doornik

    (Nuffield College, University of Oxford)

  • Neil Shephard

    (Nuffield College, University of Oxford)

  • David F. Hendry

    (Nuffield College, University of Oxford)

Abstract

Parallel computation has a long history in econometric computing, but is not at all wide spread. We believe that a major impediment is the labour cost of coding for parallel architectures. Moreover, programs for specific hardware often become obsolete quite quickly. Our approach is to take a popular matrix programming language (Ox), and implement a message-passing interface using MPI. Next, object-oriented programming allows us to hide the specific parallelization code, so that a program does not need to be rewritten when it is ported from the desktop to a distributed network of computers. Our focus is on so-called embarrassingly parallel computations, and we address the issue of parallel random number generation.

Suggested Citation

  • Jurgen A. Doornik & Neil Shephard & David F. Hendry, 2004. "Parallel Computation in Econometrics: A Simplified Approach," Economics Papers 2004-W16, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:0416
    as

    Download full text from publisher

    File URL: http://www.nuff.ox.ac.uk/economics/papers/2004/w16/JADDFHNSHandbook.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    2. Cribari-Neto, Francisco & Jensen, Mark J, 1997. "MATLAB as an Econometric Programming Environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(6), pages 735-744, Nov.-Dec..
    3. Anna Nagurney & Ding Zhang, "undated". "Massively Parallel Computation of Dynamic Traffic Problems Modeled as Projected Dynamical Systems," Computing in Economics and Finance 1996 _039, Society for Computational Economics.
    4. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    5. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    6. Nagurney, Anna & Takayama, Takashi & Zhang, Ding, 1995. "Massively parallel computation of spatial price equilibrium problems as dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 3-37.
    7. Nagurney, Anna & Zhang, Ding, 1998. "A massively parallel implementation of a discrete-time algorithm for the computation of dynamic elastic demand traffic problems modeled as projected dynamical systems," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1467-1485, August.
    8. A. Abdelkhalek, A. Bilas and A. Michaelides, 2001. "Parallelization and Performance of Portfolio Choice Models," Computing in Economics and Finance 2001 114, Society for Computational Economics.
    9. Murphy, K. & Clint, M. & Perrott, R. H., 1999. "Re-engineering statistical software for efficient parallel execution," Computational Statistics & Data Analysis, Elsevier, vol. 31(4), pages 441-456, October.
    10. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    11. Christopher Ferrall, 2003. "Solving Finite Mixture Models in Parallel," Computational Economics 0303003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathur, Sudhanshu & Morozov, Sergei, 2009. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," MPRA Paper 16721, University Library of Munich, Germany.
    2. Morozov, Sergei & Mathur, Sudhanshu, 2009. "Massively parallel computation using graphics processors with application to optimal experimentation in dynamic control," MPRA Paper 30298, University Library of Munich, Germany, revised 04 Apr 2011.
    3. Sergei Morozov & Sudhanshu Mathur, 2012. "Massively Parallel Computation Using Graphics Processors with Application to Optimal Experimentation in Dynamic Control," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 151-182, August.
    4. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.
    5. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    6. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    7. Rob Luginbuhl & Siem Jan Koopman, 2004. "Convergence in European GDP series: a multivariate common converging trend-cycle decomposition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 611-636.
    8. Lilia Maliar, 2015. "Assessing gains from parallel computation on a supercomputer," Economics Bulletin, AccessEcon, vol. 35(1), pages 159-167.
    9. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
    10. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
    11. Kelly Burns, 2016. "A Reconsideration of the Meese-Rogoff Puzzle: An Alternative Approach to Model Estimation and Forecast Evaluation," Multinational Finance Journal, Multinational Finance Journal, vol. 20(1), pages 41-83, March.
    12. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    13. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    14. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    15. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    16. Keen Meng Choy & Hwee Kwan Chow, 2004. "Forecasting the Global Electronics Cycle with Leading Indicators: A VAR Approach," Econometric Society 2004 Australasian Meetings 223, Econometric Society.
    17. Garnier, Julien & Wilhelmsen, Björn-Roger, 2005. "The natural real interest rate and the output gap in the euro area: a joint estimation," Working Paper Series 546, European Central Bank.
    18. Clemente De Lucia, 2007. "Did the FED Inflate a Housing Price Bubble? A Cointegration Analysis between the 1980s and the 1990s," ISAE Working Papers 82, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).

    More about this item

    Keywords

    Code optimization; Econometrics; High-performance computing; Matrix-programming language; Monte Carlo; MPI; Ox; Parallel computing; Random number generation.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:0416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.