IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v124y2014i3p494-499.html
   My bibliography  Save this article

Efficient estimation of conditionally linear and Gaussian state space models

Author

Listed:
  • Moura, Guilherme V.
  • Turatti, Douglas Eduardo

Abstract

An efficient estimation procedure for conditionally linear and Gaussian state space models is developed. Efficient importance sampling together with a Rao-Blackwellization step are used to construct a highly efficient estimation method that produces continuous approximations to the likelihood function, greatly enhancing simulated maximum likelihood estimation. An application where the unobserved component stochastic volatility model is used to model inflation is proposed and parameter estimates for all G7 countries are shown to be statistically different from calibrated values used in the literature. The estimated model is used to forecast inflation of these countries.

Suggested Citation

  • Moura, Guilherme V. & Turatti, Douglas Eduardo, 2014. "Efficient estimation of conditionally linear and Gaussian state space models," Economics Letters, Elsevier, vol. 124(3), pages 494-499.
  • Handle: RePEc:eee:ecolet:v:124:y:2014:i:3:p:494-499
    DOI: 10.1016/j.econlet.2014.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176514002754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2014.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Roman Liesenfeld & Guilherme V. Moura & Jean-François Richard & Hariharan Dharmarajan, 2013. "Efficient Likelihood Evaluation of State-Space Representations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 538-567.
    2. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    3. Yufeng Han, 2006. "Asset Allocation with a High Dimensional Latent Factor Stochastic Volatility Model," The Review of Financial Studies, Society for Financial Studies, vol. 19(1), pages 237-271.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Timothy Cogley & Giorgio E. Primiceri & Thomas J. Sargent, 2010. "Inflation-Gap Persistence in the US," American Economic Journal: Macroeconomics, American Economic Association, vol. 2(1), pages 43-69, January.
    6. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    7. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    8. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    9. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Renhe & Wang, Tong & Qian, Zhiyong & Hu, Shulan, 2023. "A Bayesian estimation approach of random switching exponential smoothing with application to credit forecast," Finance Research Letters, Elsevier, vol. 58(PC).
    2. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    3. Yuntong Liu & Yu Wei & Yi Liu & Wenjuan Li, 2020. "Forecasting Oil Price by Hierarchical Shrinkage in Dynamic Parameter Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    2. Mengheng Li & Siem Jan (S.J.) Koopman, 2018. "Unobserved Components with Stochastic Volatility in U.S. Inflation: Estimation and Signal Extraction," Tinbergen Institute Discussion Papers 18-027/III, Tinbergen Institute.
    3. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    4. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    5. Nalan Basturk & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2016. "Time-varying Combinations of Bayesian Dynamic Models and Equity Momentum Strategies," Tinbergen Institute Discussion Papers 16-099/III, Tinbergen Institute.
    6. Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019. "Forecast density combinations of dynamic models and data driven portfolio strategies," Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
    7. Tsyplakov Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," EERC Working Paper Series 10/09e, EERC Research Network, Russia and CIS.
    8. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    9. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
    10. Tsyplakov, Alexander, 2010. "The links between inflation and inflation uncertainty at the longer horizon," MPRA Paper 26908, University Library of Munich, Germany.
    11. Chin, Kuo-Hsuan & Li, Xue, 2019. "Bayesian forecast combination in VAR-DSGE models," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 278-298.
    12. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    13. Christian Bauer & Sebastian Weber, 2016. "The Efficiency of Monetary Policy when Guiding Inflation Expectations," Research Papers in Economics 2016-14, University of Trier, Department of Economics.
    14. Michael T. Kiley, 2008. "Monetary policy actions and long-run inflation expectations," Finance and Economics Discussion Series 2008-03, Board of Governors of the Federal Reserve System (U.S.).
    15. Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013. "A New Model of Trend Inflation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
    16. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    17. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    18. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    19. Yunjong Eo & Luis Uzeda & Benjamin Wong, 2023. "Understanding trend inflation through the lens of the goods and services sectors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 751-766, August.
    20. Guglielmo Maria Caporale & Luis Alberiko Gil‐Alana & Tommaso Trani, 2022. "On the persistence of UK inflation: A long‐range dependence approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 439-454, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:124:y:2014:i:3:p:494-499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.