IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2017-60.html

Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence and Volatility

Author

Listed:
  • Elmar Mertens
  • James M. Nason

Abstract

This paper studies the joint dynamics of real time U.S. inflation and the mean inflation predictions of the Survey of Professional Forecasters (SPF) on a 1968Q4 to 2017Q2 sample. The joint data generating process (DGP) is an unobserved components (UC) model of inflation and a sticky information (SI) prediction mechanism for SPF inflation predictions. We add drifting gap inflation persistence to a UC model that already has stochastic volatility (SV) afflicting trend and gap inflation. Another innovation puts a time-varying frequency of inflation forecast updating into the SI-prediction mechanism. The joint DGP is a nonlinear state space model (SSM). We estimate the SSM using Bayesian tools grounded in a Rao-Blackwellized auxiliary particle filter, particle learning, and a particle smoother. The estimates show (i) longer horizon average SPF inflation predictions inform estimates of trend inflation, (ii) gap inflation persistence is pro-cyclical, and SI inflation updating is frequent before the Volcker disinflation, and (iii) subsequently, trend inflation and its SV fall, gap inflation persistence turns counter-cyclical, and SI inflation updating becomes infrequent.

Suggested Citation

  • Elmar Mertens & James M. Nason, 2017. "Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence and Volatility," CAMA Working Papers 2017-60, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2017-60
    as

    Download full text from publisher

    File URL: https://crawford.anu.edu.au/sites/default/files/2025-01/60_2017_mertens_nason.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2017-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.