IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2015-06.html
   My bibliography  Save this paper

Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility

Author

Listed:
  • Elmar Mertens
  • James M Nason

Abstract

This paper studies the joint dynamics of U.S. inflation and the average inflation predictions of the Survey of Professional Forecasters (SPF) on a sample running from 1968Q4 to 2014Q2. The joint data generating process (DGP) of these data consists of the unobserved components (UC) model of Stock and Watson (2007, "Why has US inflation become harder to forecast?," Journal of Money, Credit and Banking 39(S1), 3-33) and the sticky information (SI) forecast updating equation of Mankiw and Reis (2002, "Sticky information versus sticky prices: A proposal to replace the New Keynesian Phillips curve," Quarterly Journal of Economics 117, 1295-1328). We introduce timevarying inflation gap persistence into the Stock and Watson (SW)-UC model and a timevarying frequency of forecast updating into the SI forecast updating equating. These models combine to produce a nonlinear state space model. This model is estimated using Bayesian tools grounded in the particle filter, which is an implementation of sequential Monte Carlo methods. The estimates reveal the data prefer the joint DGP of time-varying frequency of SI forecast updating and a SW-UC model with time-varying persistence. The joint DGP produces estimates that indicate the inflation spike of 1974 was explained most by gap inflation, but trend inflation dominates the inflation peak of the early 1980s. We also find the stochastic volatility (SV) of trend inflation exhibits negative co-movement with the time-varying frequency of SI forecast updating while the SV and time-varying persistence of gap inflation often show positive co-movement. Thus, the average SPF respondent is most sensitive to the impact of permanent shocks on the conditional mean of inflation.

Suggested Citation

  • Elmar Mertens & James M Nason, 2015. "Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence, and Volatility," CAMA Working Papers 2015-06, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2015-06
    as

    Download full text from publisher

    File URL: https://cama.crawford.anu.edu.au/sites/default/files/publication/cama_crawford_anu_edu_au/2015-03/6_2015_mertens_nason.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
    3. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    4. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    5. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    6. Bartosz Mackowiak & Mirko Wiederholt, 2019. "Optimal Sticky Prices Under Rational Inattention," Credit and Capital Markets, Credit and Capital Markets, vol. 52(4), pages 573-617.
    7. James H. Stock & Mark W. Watson, 2016. "Core Inflation and Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
    8. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    9. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    10. Sharon Kozicki & P. A. Tinsley, 2012. "Effective Use of Survey Information in Estimating the Evolution of Expected Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 145-169, February.
    11. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    12. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    13. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    14. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    15. Goodfriend, Marvin & King, Robert G., 2005. "The incredible Volcker disinflation," Journal of Monetary Economics, Elsevier, vol. 52(5), pages 981-1015, July.
    16. Monica Jain, 2019. "Perceived Inflation Persistence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 110-120, January.
    17. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    18. Grassi Stefano & Proietti Tommaso, 2010. "Has the Volatility of U.S. Inflation Changed and How?," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-22, September.
    19. Hedibert F. Lopes & Ruey S. Tsay, 2011. "Particle filters and Bayesian inference in financial econometrics," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(1), pages 168-209, January.
    20. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    21. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    22. Flury, Thomas & Shephard, Neil, 2011. "Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models," Econometric Theory, Cambridge University Press, vol. 27(05), pages 933-956, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnoud Stevens & Joris Wauters, 2021. "Is euro area lowflation here to stay? Insights from a time‐varying parameter model with survey data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 566-586, August.
    2. Geraldine Dany-Knedlik & Juan Angel Garcia, 2018. "Monetary Policy and Inflation Dynamics in ASEAN Economies," Discussion Papers of DIW Berlin 1755, DIW Berlin, German Institute for Economic Research.
    3. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolás Moreno-Arias & Sara Naranjo-Saldarriaga, 2021. "Unraveling the Exogenous Forces Behind Analysts’ Macroeconomic Forecasts," Borradores de Economia 1184, Banco de la Republica de Colombia.
    4. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    5. Hur, Joonyoung, 2018. "Time-varying information rigidities and fluctuations in professional forecasters' disagreement," Economic Modelling, Elsevier, vol. 75(C), pages 117-131.
    6. Aristidou, Chrystalleni, 2018. "The meta-Phillips Curve: Modelling U.S. inflation in the presence of regime change," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 367-379.
    7. Huw Dixon & Joshy Easaw & Saeed Heravi, 2020. "Forecasting inflation gap persistence: Do financial sector professionals differ from nonfinancial sector ones?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 461-474, July.
    8. Jmaes McNeil, 2020. "Monetary policy and the term structure of Inflation expectations with information frictions," Working Papers daleconwp2020-07, Dalhousie University, Department of Economics.
    9. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    10. Francesca Rondina, 2018. "Estimating Unobservable Inflation Expectations in the New Keynesian Phillips Curve," Econometrics, MDPI, vol. 6(1), pages 1-20, February.
    11. Joshua C.C. Chan & Todd E. Clark & Gary Koop, 2018. "A New Model of Inflation, Trend Inflation, and Long‐Run Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(1), pages 5-53, February.
    12. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    2. Benjamin K. Johannsen & Elmar Mertens, 2021. "A Time‐Series Model of Interest Rates with the Effective Lower Bound," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
    3. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    4. Huw Dixon & Joshy Easaw & Saeed Heravi, 2020. "Forecasting inflation gap persistence: Do financial sector professionals differ from nonfinancial sector ones?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 461-474, July.
    5. Paul Hubert & Harun Mirza, 2019. "The role of forward‐ and backward‐looking information for inflation expectations formation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(8), pages 733-748, December.
    6. Richard K. Crump & Stefano Eusepi & Emanuel Moench & Bruce Preston, 2021. "The Term Structure of Expectations," Staff Reports 992, Federal Reserve Bank of New York.
    7. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    8. Mengheng Li & Siem Jan Koopman, 2021. "Unobserved components with stochastic volatility: Simulation‐based estimation and signal extraction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 614-627, August.
    9. James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.
    10. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    11. Gbaguidi, David, 2012. "La courbe de Phillips : temps d’arbitrage et/ou arbitrage de temps," L'Actualité Economique, Société Canadienne de Science Economique, vol. 88(1), pages 87-119, mars.
    12. Lasha Kavtaradze & Manouchehr Mokhtari, 2018. "Factor Models And Time†Varying Parameter Framework For Forecasting Exchange Rates And Inflation: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 302-334, April.
    13. Jmaes McNeil, 2020. "Monetary policy and the term structure of Inflation expectations with information frictions," Working Papers daleconwp2020-07, Dalhousie University, Department of Economics.
    14. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    15. Christine Garnier & Elmar Mertens & Edward Nelson, 2015. "Trend Inflation in Advanced Economies," International Journal of Central Banking, International Journal of Central Banking, vol. 11(4), pages 65-136, September.
    16. Kose, Ayhan & Matsuoka, Hideaki & Panizza, Ugo & Vorisek, Dana, 2019. "Inflation Expectations: Review and Evidence," CEPR Discussion Papers 13601, C.E.P.R. Discussion Papers.
    17. Richard K. Crump & Stefano Eusepi & Emanuel Moench, 2016. "The term structure of expectations and bond yields," Staff Reports 775, Federal Reserve Bank of New York.
    18. Kamber, Güneş & Wong, Benjamin, 2020. "Global factors and trend inflation," Journal of International Economics, Elsevier, vol. 122(C).
    19. Alex, Dony, 2021. "Anchoring of inflation expectations in large emerging economies," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    20. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.

    More about this item

    Keywords

    Inflation; professional forecasters; sticky information; particle filter; Bayesian estimation; Markov chain Monte Carlo; stochastic volatility; time-varying persistence.;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2015-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.