IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Martingale unobserved component models

Listed author(s):
  • Neil Shephard

I discuss models which allow the local level model, which rationalised exponentially weighted moving averages, to have a time-varying signal/noise ratio. I call this a martingale component model. This makes the rate of discounting of data local. I show how to handle such models effectively using an auxiliary particle filter which deploys M Kalman filters run in parallel competing against one another. Here one thinks of M as being 1,000 or more. The model is applied to inflation forecasting. The model generalises to unobserved component models where Gaussian shocks are replaced by martingale difference sequences.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.economics.ox.ac.uk/materials/papers/12621/paper644.pdf
Download Restriction: no

Paper provided by University of Oxford, Department of Economics in its series Economics Series Working Papers with number 644.

as
in new window

Length:
Date of creation: 10 Feb 2013
Handle: RePEc:oxf:wpaper:644
Contact details of provider: Postal:
Manor Rd. Building, Oxford, OX1 3UQ

Web page: http://www.economics.ox.ac.uk/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space form," Tinbergen Institute Discussion Papers 04-015/4, Tinbergen Institute.
  2. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
  3. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543, December.
  4. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  5. Jesús Fernández-Villaverde & Pablo A. Guerrón-Quintana & Juan Rubio-Ramírez & Martín Uribe, 2009. "Risk Matters: The Real Effects of Volatility Shocks," NBER Working Papers 14875, National Bureau of Economic Research, Inc.
  6. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  7. repec:oxf:wpaper:413 is not listed on IDEAS
  8. Harvey, A.C. & Koopman, S.J.M., 1999. "Signal Extraction and the Formulation of Unobserved Components Models," Discussion Paper 1999-44, Tilburg University, Center for Economic Research.
  9. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, 09.
  10. James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
  11. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
  12. Koopman S.J. & Bos C.S., 2004. "State Space Models With a Common Stochastic Variance," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 346-357, July.
  13. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
  14. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  15. Drew Creal & Siem Jan Koopman & André Lucas, 2008. "A General Framework for Observation Driven Time-Varying Parameter Models," Tinbergen Institute Discussion Papers 08-108/4, Tinbergen Institute.
  16. Dario Caldara & Jesus Fernandez-Villaverde & Juan Rubio-Ramirez & Wen Yao, 2012. "Computing DSGE Models with Recursive Preferences and Stochastic Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(2), pages 188-206, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:644. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Monica Birds)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.