IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-9053(05)20007-5.html

Model-Based Measurement of Actual Volatility in High-Frequency Data

In: Econometric Analysis of Financial and Economic Time Series

Author

Listed:
  • Borus Jungbacker
  • Siem Jan Koopman

Abstract

In this chapter, we aim to measure the actual volatility within a model-based framework using high-frequency data. In the empirical finance literature, it is widely discussed that tick-by-tick prices are subject to market micro-structure effects such as bid-ask bounces and trade information. These market micro-structure effects become more and more apparent as prices or returns are sampled at smaller and smaller time intervals. An increasingly popular measure for the variability of spot prices on a particular day is realised volatility that is typically defined as the sum of squared intra-daily log-returns. Recent theoretical results have shown that realised volatility is a consistent estimator of actual volatility, but when it is subject to micro-structure noise and the sampling frequency increases, the estimator diverges. Parametric and nonparametric methods can be adopted to account for the micro-structure bias. Here, we measure actual volatility using a model that takes account of micro-structure noise together with intra-daily volatility patterns and stochastic volatility. The coefficients of this model are estimated by maximum likelihood methods that are based on importance sampling techniques. It is shown that such Monte Carlo techniques can be employed successfully for our purposes in a feasible way. As far as we know, this is a first attempt to model the basic components of the mean and variance of high-frequency prices simultaneously. An illustration is given for three months of tick-by-tick transaction prices of the IBM stock traded at the New York Stock Exchange.

Suggested Citation

  • Borus Jungbacker & Siem Jan Koopman, 2006. "Model-Based Measurement of Actual Volatility in High-Frequency Data," Advances in Econometrics, in: Econometric Analysis of Financial and Economic Time Series, pages 183-210, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-9053(05)20007-5
    DOI: 10.1016/S0731-9053(05)20007-5
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20007-5/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1016/S0731-9053(05)20007-5/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1016/S0731-9053(05)20007-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. repec:lan:wpaper:3046 is not listed on IDEAS
    3. repec:lan:wpaper:3324 is not listed on IDEAS
    4. repec:lan:wpaper:592830 is not listed on IDEAS

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-9053(05)20007-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.