IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

On some properties of Markov chain Monte Carlo simulation methods based on the particle filter

  • Pitt, Michael K.
  • Silva, Ralph dos Santos
  • Giordani, Paolo
  • Kohn, Robert

Andrieu et al. (2010) prove that Markov chain Monte Carlo samplers still converge to the correct posterior distribution of the model parameters when the likelihood estimated by the particle filter (with a finite number of particles) is used instead of the likelihood. A critical issue for performance is the choice of the number of particles. We add the following contributions. First, we provide analytically derived, practical guidelines on the optimal number of particles to use. Second, we show that a fully adapted auxiliary particle filter is unbiased and can drastically decrease computing time compared to a standard particle filter. Third, we introduce a new estimator of the likelihood based on the output of the auxiliary particle filter and use the framework of Del Moral (2004) to provide a direct proof of the unbiasedness of the estimator. Fourth, we show that the results in the article apply more generally to Markov chain Monte Carlo sampling schemes with the likelihood estimated in an unbiased manner.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304407612001510
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 171 (2012)
Issue (Month): 2 ()
Pages: 134-151

as
in new window

Handle: RePEc:eee:econom:v:171:y:2012:i:2:p:134-151
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  2. Malik, Sheheryar & Pitt, Michael K., 2011. "Particle filters for continuous likelihood evaluation and maximisation," Journal of Econometrics, Elsevier, vol. 165(2), pages 190-209.
  3. Giordani, P. & Kohn, R. & van Dijk, D.J.C., 2005. "A unified approach to nonlinearity, structural change and outliers," Econometric Institute Research Papers EI 2005-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. Smith, J.Q. & Santos, Antonio A.F., 2006. "Second-Order Filter Distribution Approximations for Financial Time Series With Extreme Outliers," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 329-337, July.
  5. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2003. "Likelihood-based estimation of latent generalised ARCH structures," LSE Research Online Documents on Economics 24852, London School of Economics and Political Science, LSE Library.
  6. Creal, D., 2009. "A survey of sequential Monte Carlo methods for economics and finance," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  7. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  8. Fernández-Villaverde, Jesús & Rubio-Ramírez, Juan Francisco, 2006. "Estimating Macroeconomic Models: A Likelihood Approach," CEPR Discussion Papers 5513, C.E.P.R. Discussion Papers.
  9. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  10. Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
  11. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
  12. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  13. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
  14. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:171:y:2012:i:2:p:134-151. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.