IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Sequential Monte Carlo sampling for DSGE models

  • Edward Herbst
  • Frank Schorfheide

We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models, wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using three examples consisting of an artificial state-space model, the Smets and Wouters (2007) model, and Schmitt-Grohe and Uribe's (2012) news shock model we show that the SMC algorithm is better suited for multi-modal and irregular posterior distributions than the widely-used random walk Metropolis-Hastings algorithm. Unlike standard Markov chain Monte Carlo (MCMC) techniques, the SMC algorithm is well suited for parallel computing.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.philadelphiafed.org/research-and-data/publications/working-papers/2012/wp12-27.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Philadelphia in its series Working Papers with number 12-27.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:fip:fedpwp:12-27
Contact details of provider: Postal: 10 Independence Mall, Philadelphia, PA 19106-1574
Web page: http://www.philadelphiafed.org/

More information through EDIRC

Order Information: Web: http://www.phil.frb.org/econ/wps/index.html Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. DeJong, David N. & Ingram, Beth F. & Whiteman, Charles H., 2000. "A Bayesian approach to dynamic macroeconomics," Journal of Econometrics, Elsevier, vol. 98(2), pages 203-223, October.
  2. Pierre Del Moral & Arnaud Doucet & Ajay Jasra, 2006. "Sequential Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 411-436.
  3. Frank Schorfheide & Marco Del Negro, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," 2007 Meeting Papers 283, Society for Economic Dynamics.
  4. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
  5. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
  6. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.
  7. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : I. The basic neoclassical model," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 195-232.
  8. Christopher Otrok, 2000. "On Measuring the Welfare Cost of Business Cycles," Econometric Society World Congress 2000 Contributed Papers 1094, Econometric Society.
  9. Strid, Ingvar & Giordani, Paolo & Kohn, Robert, 2010. "Adaptive hybrid Metropolis-Hastings samplers for DSGE models," SSE/EFI Working Paper Series in Economics and Finance 724, Stockholm School of Economics.
  10. Rabanal, Pau & Rubio-Ramirez, Juan F., 2005. "Comparing New Keynesian models of the business cycle: A Bayesian approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1151-1166, September.
  11. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
  12. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:12-27. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beth Paul)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.