IDEAS home Printed from https://ideas.repec.org/p/fip/fedpwp/13-34.html
   My bibliography  Save this paper

Reverse Kalman filtering U.S. inflation with sticky professional forecasts

Author

Listed:
  • James M. Nason
  • Gregor W. Smith

Abstract

We provide a new way to filter US inflation into trend and cycle components, based on extracting long-run forecasts from the Survey of Professional Forecasters. We operate the Kalman filter in reverse, beginning with observed forecasts, then estimating parameters, and then extracting the stochastic trend in inflation. The trend-cycle model with unobserved components is consistent with numerous studies of US inflation history and is of interest partly because the trend may be viewed as the Fed?s evolving inflation target or long-horizon expected inflation. The sluggish reporting attributed to forecasters is consistent with evidence on mean forecast errors. We find considerable evidence of inflation-gap persistence and some evidence of implicit sticky information. But statistical tests show we cannot reconcile these two widely used perspectives on US inflation forecasts, the unobserved-components model and the sticky-information model.

Suggested Citation

  • James M. Nason & Gregor W. Smith, 2013. "Reverse Kalman filtering U.S. inflation with sticky professional forecasts," Working Papers 13-34, Federal Reserve Bank of Philadelphia.
  • Handle: RePEc:fip:fedpwp:13-34
    as

    Download full text from publisher

    File URL: https://www.philadelphiafed.org/-/media/frbp/assets/working-papers/2013/wp13-34.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clark, Todd E. & Davig, Troy, 2011. "Decomposing the declining volatility of long-term inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 35(7), pages 981-999, July.
    2. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    3. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    4. Michael T. Kiley, 2007. "A Quantitative Comparison of Sticky-Price and Sticky-Information Models of Price Setting," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 101-125, February.
    5. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    6. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1295-1328.
    7. Devereux, Michael B & Yetman, James, 2003. "Predetermined Prices and the Persistent Effects of Money on Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 35(5), pages 729-741, October.
    8. Elmar Mertens, 2016. "Measuring the Level and Uncertainty of Trend Inflation," The Review of Economics and Statistics, MIT Press, vol. 98(5), pages 950-967, December.
    9. Khan, Hashmat & Zhu, Zhenhua, 2006. "Estimates of the Sticky-Information Phillips Curve for the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(1), pages 195-207, February.
    10. Ricardo Reis, 2006. "Inattentive Producers," Review of Economic Studies, Oxford University Press, vol. 73(3), pages 793-821.
    11. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    12. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    14. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    15. Monica Jain, 2019. "Perceived Inflation Persistence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 110-120, January.
    16. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    17. Spencer D. Krane, 2011. "Professional Forecasters' View of Permanent and Transitory Shocks to GDP," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 184-211, January.
    18. Olivier Coibion, 2010. "Testing the Sticky Information Phillips Curve," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 87-101, February.
    19. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, Oxford University Press, vol. 118(1), pages 269-298.
    20. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    21. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    22. James M. Nason, 2006. "Instability in U.S. inflation: 1967-2005," Economic Review, Federal Reserve Bank of Atlanta, vol. 91(Q 2), pages 39-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Rondina, 2018. "Estimating Unobservable Inflation Expectations in the New Keynesian Phillips Curve," Econometrics, MDPI, Open Access Journal, vol. 6(1), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    2. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    3. Kim, Insu & Kim, Young Se, 2019. "Inattentive agents and inflation forecast error dynamics: A Bayesian DSGE approach," Journal of Macroeconomics, Elsevier, vol. 62(C).
    4. Carrera Cesar, 2012. "Estimating Information Rigidity Using Firms' Survey Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(1), pages 1-34, June.
    5. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    6. Jmaes McNeil, 2020. "Monetary policy and the term structure of Inflation expectations with information frictions," Working Papers daleconwp2020-07, Dalhousie University, Department of Economics.
    7. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(7), pages 1381-1420, October.
    8. Carrera, César & Ramírez-Rondán, N.R., 2019. "Inflation, Information Rigidity, And The Sticky Information Phillips Curve," Macroeconomic Dynamics, Cambridge University Press, vol. 23(7), pages 2597-2615, October.
    9. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    10. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    11. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    12. Christian Gillitzer, 2016. "The Sticky Information Phillips Curve: Evidence for Australia," The Economic Record, The Economic Society of Australia, vol. 92(299), pages 548-567, December.
    13. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    14. Yingying Xu & Zhixin Liu & Zichao Jia & Chi-Wei Su, 2017. "Is time-variant information stickiness state-dependent?," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 16(3), pages 169-187, December.
    15. Benedetto Molinari, 2014. "Sticky information and inflation persistence: evidence from the U.S. data," Empirical Economics, Springer, vol. 46(3), pages 903-935, May.
    16. Volha Audzei, 2016. "Confidence Cycles and Liquidity Hoarding," Working Papers 2016/07, Czech National Bank.
    17. Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015. "Information rigidities: Comparing average and individual forecasts for a large international panel," International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
    18. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    19. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    20. Angeletos, G.-M. & Lian, C., 2016. "Incomplete Information in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1065-1240, Elsevier.

    More about this item

    Keywords

    Inflation (Finance) - United States; Forecasting;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:13-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/frbphus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.