IDEAS home Printed from https://ideas.repec.org/p/ags/aaea16/235108.html
   My bibliography  Save this paper

Estimating Multi-Product Production Functions and Productivity using Control Functions

Author

Listed:
  • Malikov, Emir

Abstract

The existing control-function-based approaches to the identification of firm-level production functions are exclusively concerned with the estimation of single-output production functions despite that, in practice, most firms produce multiple outputs. While one can always opt to employ a single-product specification of the production process by a priori aggregating the firm's outputs, such a formulation is rarely an accurate portrayal of the firm's productive process. This paper extends the control-function-based approach to the structural identification and estimation of firm-level production functions and productivity to the multi-product setting. Specifically, I consider the nonparametric estimation of multi-product production functions. Among other advantages, explicit modeling of multiple outputs allows the identification of cross-output elasticities representing the technological trade-off between individual outputs along the firm's production possibilities frontier, which a traditional single-output production function approach is unable to deliver. To showcase the methodology, I apply it to study the multi-product production technology of Norwegian dairy farms during the 1998-2008 period.

Suggested Citation

  • Malikov, Emir, 2016. "Estimating Multi-Product Production Functions and Productivity using Control Functions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235108, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea16:235108
    DOI: 10.22004/ag.econ.235108
    as

    Download full text from publisher

    File URL: http://ageconsearch.umn.edu/record/235108/files/Malikov-MultiProductControlFunction.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    2. Fernandez, Carmen & Koop, Gary & Steel, Mark, 2000. "A Bayesian analysis of multiple-output production frontiers," Journal of Econometrics, Elsevier, vol. 98(1), pages 47-79, September.
    3. Amit Gandhi & Salvador Navarro & David Rivers, 2011. "On the Identification of Production Functions: How Heterogeneous is Productivity?," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20119, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    4. Griffiths, William E. & Hajargasht, Gholamreza, 2016. "Some models for stochastic frontiers with endogeneity," Journal of Econometrics, Elsevier, vol. 190(2), pages 341-348.
    5. Atkinson, Scott E. & Primont, Daniel, 2002. "Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions," Journal of Econometrics, Elsevier, vol. 108(2), pages 203-225, June.
    6. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    7. Fernandez, Carmen & Koop, Gary & Steel, Mark F.J., 2005. "Alternative efficiency measures for multiple-output production," Journal of Econometrics, Elsevier, vol. 126(2), pages 411-444, June.
    8. Bernhard Brümmer & Thomas Glauben & Geert Thijssen, 2002. "Decomposition of Productivity Growth Using Distance Functions: The Case of Dairy Farms in Three European Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 628-644.
    9. Newey, Whitney K., 1984. "A method of moments interpretation of sequential estimators," Economics Letters, Elsevier, vol. 14(2-3), pages 201-206.
    10. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    11. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    12. Grigorios Emvalomatis & Spiro E. Stefanou & Alfons Oude Lansink, 2010. "A Reduced-Form Model for Dynamic Efficiency Measurement: Application to Dairy Farms in Germany and The Netherlands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(1), pages 161-174.
    13. C. O’Donnell & K. Nguyen, 2013. "An econometric approach to estimating support prices and measures of productivity change in public hospitals," Journal of Productivity Analysis, Springer, vol. 40(3), pages 323-335, December.
    14. Tran, Kien C. & Tsionas, Efthymios G., 2013. "GMM estimation of stochastic frontier model with endogenous regressors," Economics Letters, Elsevier, vol. 118(1), pages 233-236.
    15. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," Review of Economic Studies, Oxford University Press, vol. 70(2), pages 317-341.
    16. Daniel Muluwork Atsbeha & Dadi Kristofersson & Kyrre Rickertsen, 2012. "Animal Breeding and Productivity Growth of Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 996-1012.
    17. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    18. Efthymios G. Tsionas & Subal C. Kumbhakar & Emir Malikov, 2015. "Estimation of Input Distance Functions: A System Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1478-1493.
    19. Atkinson, Scott E & Cornwell, Christopher & Honerkamp, Olaf, 2003. "Measuring and Decomposing Productivity Change: Stochastic Distance Function Estimation versus Data Envelopment Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 284-294, April.
    20. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    21. Rolf Jens Brunstad & Ivar Gaasland & Erling Vårdal, 2005. "Efficiency losses in milk marketing boards - the importance of exports," Nordic Journal of Political Economy, Nordic Journal of Political Economy, vol. 31, pages 77-97.
    22. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    23. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    24. Ackerberg, Daniel & Caves, Kevin & Frazer, Garth, 2006. "Structural identification of production functions," MPRA Paper 38349, University Library of Munich, Germany.
    25. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Production Economics; Productivity Analysis; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea16:235108. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: http://edirc.repec.org/data/aaeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.