IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00754272.html

Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data

Author

Listed:
  • Thierry Magnac

    (GREMAQ - Groupe de recherche en économie mathématique et quantitative - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, IDEI - Institut d'Economie Industrielle - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse, TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique)

  • Eric Maurin

    (PJSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We investigate identification in semi-parametric binary regression models, y = 1(xβ+υ+ε > 0) when υ is either discrete or measured within intervals. The error term ε is assumed to be uncorrelated with a set of instruments z, ε is independent of υ conditionally on x and z, and the support of −(xβ + ε) is finite. We provide a sharp characterization of the set of observationally equivalent parameters β. When there are as many instruments z as variables x, the bounds of the identified intervals of the different scalar components βk of parameter β can be expressed as simple moments of the data. Also, in the case of interval data, we show that additional information on the distribution of υ within intervals shrinks the identified set. Specifically, the closer the conditional distribution of υ given z is to uniformity, the smaller is the identified set. Point identified is achieved if and only if υ is uniform within intervals.

Suggested Citation

  • Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," Post-Print halshs-00754272, HAL.
  • Handle: RePEc:hal:journl:halshs-00754272
    DOI: 10.1111/j.1467-937X.2008.00490.x
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00754272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.