IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v7y2016i2p329-366.html
   My bibliography  Save this article

Bayesian inference in a class of partially identified models

Author

Listed:
  • Brendan Kline
  • Elie Tamer

Abstract

This paper develops a Bayesian approach to inference in a class of partially identified econometric models. Models in this class are characterized by a known mapping between a point identified reduced‐form parameter μ and the identified set for a partially identified parameter θ. The approach maps posterior inference about μ to various posterior inference statements concerning the identified set for θ, without the specification of a prior for θ. Many posterior inference statements are considered, including the posterior probability that a particular parameter value (or a set of parameter values) is in the identified set. The approach applies also to functions of θ. The paper develops general results on large sample approximations, which illustrate how the posterior probabilities over the identified set are revised by the data, and establishes conditions under which the Bayesian credible sets also are valid frequentist confidence sets. The approach is computationally attractive even in high‐dimensional models, in that the approach avoids an exhaustive search over the parameter space. The performance of the approach is illustrated via Monte Carlo experiments and an empirical application to a binary entry game involving airlines.

Suggested Citation

  • Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
  • Handle: RePEc:wly:quante:v:7:y:2016:i:2:p:329-366
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:7:y:2016:i:2:p:329-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.