IDEAS home Printed from https://ideas.repec.org/f/psi733.html
   My authors  Follow this author

Anna Simoni

Personal Details

First Name:Anna
Middle Name:
Last Name:Simoni
Suffix:
RePEc Short-ID:psi733
[This author has chosen not to make the email address public]
https://sites.google.com/view/simonianna

Affiliation

Centre de Recherche en Économie et Statistique (CREST)

Palaiseau, France
http://crest.science/

: 01 70 26 67 00

Bâtiment ENSAE, 5 rue Henry Le Chatelier, 91120 Palaiseau
RePEc:edi:crestfr (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2019. "Bayesian Estimation and Comparison of Conditional Moment Models," Working Papers 19-51, Federal Reserve Bank of Philadelphia, revised 09 Dec 2019.
  2. Laurent Ferrara & Anna Simoni, 2019. "When are Google data useful to nowcast GDP? An approach via pre-selection and shrinkage," Working papers 717, Banque de France.
  3. Christoph Breunig & Enno Mammen & Anna Simoni, 2018. "Ill-posed Estimation in High-Dimensional Models with Instrumental Variables," Papers 1806.00666, arXiv.org.
  4. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.
  5. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
  6. Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.
  7. Stefan Hoderlein & Lars Nesheim & Anna Simoni, 2015. "Semiparametric Estimation of Random Coefficients in Structural Economic Models," Boston College Working Papers in Economics 895, Boston College Department of Economics, revised 01 Feb 2016.
  8. Anna Simoni & Jean-Pierre Florens, 2013. "Regularizing Priors for Linear Inverse Problems," THEMA Working Papers 2013-32, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  9. Jean-Pierre Florens & Anna Simoni, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Post-Print hal-00922877, HAL.
  10. Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
  11. Christoph Breunig & Enno Mammen & Anna Simoni, "undated". "Nonparametric Estimation in case of Endogenous Selection," SFB 649 Discussion Papers SFB649DP2015-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Articles

  1. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
  2. Jean-Pierre FLORENS & Anna SIMONI, 2017. "Introduction to the Special Issue on Inverse Problems in Econometrics," Annals of Economics and Statistics, GENES, issue 128, pages 1-3.
  3. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
  4. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
  5. Jean-Pierre Florens & Anna Simoni, 2012. "Regularized Posteriors in Linear Ill-Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 214-235, June.
  6. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Siddhartha Chib & Minchul Shin & Anna Simoni, 2019. "Bayesian Estimation and Comparison of Conditional Moment Models," Working Papers 19-51, Federal Reserve Bank of Philadelphia, revised 09 Dec 2019.

    Cited by:

    1. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.

  2. Siddharta Chib & Minchul Shin & Anna Simoni, 2016. "Bayesian Empirical Likelihood Estimation and Comparison of Moment Condition Models," Working Papers 2016-21, Center for Research in Economics and Statistics.

    Cited by:

    1. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.

  3. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.

    Cited by:

    1. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.

  4. Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.

    Cited by:

    1. Dante Amengual & Enrique Sentana, 2016. "Comments on: Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 14(2), pages 248-252.

  5. Stefan Hoderlein & Lars Nesheim & Anna Simoni, 2015. "Semiparametric Estimation of Random Coefficients in Structural Economic Models," Boston College Working Papers in Economics 895, Boston College Department of Economics, revised 01 Feb 2016.

    Cited by:

    1. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    2. Michele De Nadai & Arthur Lewbel, 2012. "Nonparametric Errors in Variables Models with Measurement Errors on both sides of the Equation," Boston College Working Papers in Economics 790, Boston College Department of Economics, revised 01 Jul 2013.
    3. Nail Kashaev & Bruno Salcedo, 2019. "Discerning Solution Concepts," Papers 1909.09320, arXiv.org.
    4. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    5. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    6. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2012. "On the testability of identification in some nonparametric models with endogeneity," CeMMAP working papers CWP18/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    8. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
    9. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    10. Juan Carlos Escanciano & Stefan Hoderlein & Arthur Lewbel & Oliver Linton, 2015. "Nonparametric Euler Equation Identification andEstimation," Cambridge Working Papers in Economics 1560, Faculty of Economics, University of Cambridge.
    11. Juan Carlos Escanciano & Wei Li, 2013. "On the identification of structural linear functionals," CeMMAP working papers CWP48/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Gaurab Aryal, 2014. "Identifying Multidiemsnional Adverse Selection Models," Papers 1411.6250, arXiv.org, revised Nov 2015.

  6. Anna Simoni & Jean-Pierre Florens, 2013. "Regularizing Priors for Linear Inverse Problems," THEMA Working Papers 2013-32, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    Cited by:

    1. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    2. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    3. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    4. Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.

  7. Jean-Pierre Florens & Anna Simoni, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Post-Print hal-00922877, HAL.

    Cited by:

    1. Centorrino Samuele & Feve Frederique & Florens Jean-Pierre, 2017. "Additive Nonparametric Instrumental Regressions: A Guide to Implementation," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-25, January.
    2. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    3. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Uniform Convergence Rates for Sieve Nonparametric Instrumental Variables Regression," Papers 1311.0412, arXiv.org.
    4. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    5. Hedibert F. Lopes & Nicholas G. Polson, 2014. "Bayesian Instrumental Variables: Priors and Likelihoods," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 100-121, June.
    6. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
    7. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    8. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    9. Manuel Wiesenfarth & Carlos Matías Hisgen & Thomas Kneib & Carmen Cadarso-Suarez, 2012. "Bayesian Nonparametric Instrumental Variable Regression based on Penalized Splines and Dirichlet Process Mixtures," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 127, Courant Research Centre PEG.
    10. Joel L. Horowitz, 2013. "Adaptive nonparametric instrumental variables estimation: empirical choice of the regularization parameter," CeMMAP working papers CWP30/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    12. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers CWP32/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    14. Horowitz, Joel L., 2014. "Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter," Journal of Econometrics, Elsevier, vol. 180(2), pages 158-173.

  8. Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.

    Cited by:

    1. Raffaella Giacomini & Toru Kitagawa, 2014. "Inference about Non-Identi?ed SVARs," CeMMAP working papers CWP45/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Giacomini, Raffaella & Kitagawa, Toru, 2014. "Inference about Non-Identified SVARs," CEPR Discussion Papers 10287, C.E.P.R. Discussion Papers.
    3. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2017. "Uncertain identification," CeMMAP working papers CWP18/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

  9. Christoph Breunig & Enno Mammen & Anna Simoni, "undated". "Nonparametric Estimation in case of Endogenous Selection," SFB 649 Discussion Papers SFB649DP2015-050, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Cited by:

    1. Breunig, Christoph & Kummer, Michael & Ohnemus, Jörg & Viete, Steffen, 2016. "IT outsourcing and firm productivity: Eliminating bias from selective missingness in the dependent variable," ZEW Discussion Papers 16-092, ZEW - Leibniz Centre for European Economic Research.
    2. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    3. Nir Billfeld & Moshe Kim, 2019. "Semiparametric correction for endogenous truncation bias with Vox Populi based participation decision," Papers 1902.06286, arXiv.org.
    4. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
    5. Christoph Breunig, 2015. "Testing Missing at Random using Instrumental Variables," SFB 649 Discussion Papers SFB649DP2015-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Dec 2019.
    7. Christoph Breunig, 2017. "Testing Missing at Random using Instrumental Variables," SFB 649 Discussion Papers SFB649DP2017-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Articles

  1. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    See citations under working paper version above.
  2. Hoderlein, Stefan & Nesheim, Lars & Simoni, Anna, 2017. "Semiparametric Estimation Of Random Coefficients In Structural Economic Models," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1265-1305, December.
    See citations under working paper version above.
  3. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    See citations under working paper version above.
  4. Jean-Pierre Florens & Anna Simoni, 2012. "Regularized Posteriors in Linear Ill-Posed Inverse Problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(2), pages 214-235, June.

    Cited by:

    1. S. Darolles & Y. Fan & J. P. Florens & E. Renault, 2011. "Nonparametric Instrumental Regression," Econometrica, Econometric Society, vol. 79(5), pages 1541-1565, September.
    2. Florens, Jean-Pierre & Simoni, Anna, 2016. "Regularizing Priors For Linear Inverse Problems," Econometric Theory, Cambridge University Press, vol. 32(1), pages 71-121, February.
    3. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    4. Salomond, Jean-Bernard, 2014. "Propriétés fréquentistes des méthodes Bayésiennes semi-paramétriques et non paramétriques," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14331 edited by Rousseau, Judith & Rivoirard, Vincent, November.
    5. Jean-Pierre Florens & Anna Simoni, 2015. "Gaussian processes and Bayesian moment estimation," Working Papers 2015-09, Center for Research in Economics and Statistics.

  5. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 14 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (11) 2010-07-31 2010-08-21 2010-10-02 2010-10-02 2012-04-23 2013-01-07 2015-12-01 2016-07-16 2018-01-01 2018-07-09 2019-12-23. Author is listed
  2. NEP-ORE: Operations Research (4) 2010-08-21 2015-12-01 2018-01-01 2019-12-23. Author is listed
  3. NEP-BIG: Big Data (2) 2019-04-01 2019-04-22
  4. NEP-MAC: Macroeconomics (2) 2019-04-01 2019-04-22
  5. NEP-DCM: Discrete Choice Models (1) 2016-02-12
  6. NEP-EEC: European Economics (1) 2019-04-22
  7. NEP-GER: German Papers (1) 2016-07-16
  8. NEP-KNM: Knowledge Management & Knowledge Economy (1) 2018-07-09

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Anna Simoni should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.