IDEAS home Printed from https://ideas.repec.org/p/fda/fdaddt/2025-08.html
   My bibliography  Save this paper

From digital search to deed: Forecasting UK housing purchases in Spain using Google Trends across the Brexit disruption

Author

Listed:
  • Jorge Onrubia
  • Fernando Pinto
  • María del Carmen Rodado Ruíz

Abstract

This paper examines the predictive relationship between online search behavior and international housing demand, focusing on UK citizens purchasing property in Spain from 2014 to 2024. Using Google Trends data for the search term "Spain villas" alongside official transaction records, we estimate autoregressive(AR), argumented(ARX), and interaction models to asses whether digital intent anticipates real estate purchases.Results show that search intensity significantly enhances model performance before the 2016 Brexit referendum

Suggested Citation

  • Jorge Onrubia & Fernando Pinto & María del Carmen Rodado Ruíz, 2025. "From digital search to deed: Forecasting UK housing purchases in Spain using Google Trends across the Brexit disruption," Working Papers 2025-08, FEDEA.
  • Handle: RePEc:fda:fdaddt:2025-08
    as

    Download full text from publisher

    File URL: https://documentos.fedea.net/pubs/dt/2025/dt2025-08.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Michal Bulczak, 2021. "Use of Google Trends to Predict the Real Estate Market: Evidence from the United Kingdom," International Real Estate Review, Global Social Science Institute, vol. 24(4), pages 613-631.
    2. Concha Artola & Fernando Pinto & Pablo de Pedraza García, 2015. "Can internet searches forecast tourism inflows?," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 103-116, April.
    3. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    4. repec:eme:ijhma0:ijhma-12-2014-0058 is not listed on IDEAS
    5. Kohns, David & Bhattacharjee, Arnab, 2023. "Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
    6. Jordi Giner-Monfort, 2018. "End To Dream? British Retired Residents In Spain And Their Return Patterns," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 6(4), pages 360-374.
    7. Karen M. Gibler & Paloma Taltavull & Jos?Manuel Casado-Dˆqaz & Mari Angeles Casado-Dˆqaz & Vicente Rodriguez, 2009. "Examining Retirement Housing Preferences Among International Retiree Migrants," International Real Estate Review, Global Social Science Institute, vol. 12(1), pages 1-22.
    8. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    9. Marian Alexander Dietzel, 2016. "Sentiment-based predictions of housing market turning points with Google trends," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 9(1), pages 108-136, March.
    10. Glaeser, Edward L. & Nathanson, Charles G., 2017. "An extrapolative model of house price dynamics," Journal of Financial Economics, Elsevier, vol. 126(1), pages 147-170.
    11. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    12. Marian Alexander Dietzel, 2016. "Sentiment-based predictions of housing market turning points with Google trends," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 9(1), pages 108-136, March.
    13. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, Taylor & Francis Journals, vol. 35(3), pages 283-312, January.
    14. Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
    15. Concha Artola & Fernando Pinto & Pablo de Pedraza García, 2015. "Can internet searches forecast tourism inflows?," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 103-116, April.
    16. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    17. Eli Beracha & M. Babajide Wintoki, 2013. "Forecasting Residential Real Estate Price Changes from Online Search Activity," Journal of Real Estate Research, American Real Estate Society, vol. 35(3), pages 283-312.
    18. Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
    19. Anundsen, André K. & Jansen, Eilev S., 2013. "Self-reinforcing effects between housing prices and credit," Journal of Housing Economics, Elsevier, vol. 22(3), pages 192-212.
    20. Prashant Das & Alan Ziobrowski & N. Coulson, 2015. "Online Information Search, Market Fundamentals and Apartment Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 51(4), pages 480-502, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coble, David & Pincheira, Pablo, 2017. "Nowcasting Building Permits with Google Trends," MPRA Paper 76514, University Library of Munich, Germany.
    2. David Coble & Pablo Pincheira, 2021. "Forecasting building permits with Google Trends," Empirical Economics, Springer, vol. 61(6), pages 3315-3345, December.
    3. Biktimirov, Ernest N. & Sokolyk, Tatyana & Ayanso, Anteneh, 2024. "Unpacking the relation between media sentiment and house prices: A topic modeling approach," Journal of Housing Economics, Elsevier, vol. 66(C).
    4. Ramya Rajajagadeesan Aroul & Sanjiv Sabherwal & Sergiy Saydometov, 2022. "FEAR Index, city characteristics, and housing returns," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(1), pages 173-205, March.
    5. Ken Wong & Max Kwong & Paul Luk & Michael Cheng, 2023. "A robust textual analysis of the dynamics of Hong Kong property market," Pacific Economic Review, Wiley Blackwell, vol. 28(3), pages 314-346, August.
    6. Camilo Acosta & Luis Baldomero-Quintana, 2024. "Quality of communications infrastructure, local structural transformation, and inequality," Journal of Economic Geography, Oxford University Press, vol. 24(1), pages 117-144.
    7. Stig Vinther Møller & Thomas Pedersen & Erik Christian Montes Schütte & Allan Timmermann, 2024. "Search and Predictability of Prices in the Housing Market," Management Science, INFORMS, vol. 70(1), pages 415-438, January.
    8. Damian S. Damianov & Xiangdong Wang & Cheng Yan, 2021. "Google Search Queries, Foreclosures, and House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 63(2), pages 177-209, August.
    9. Aaronson, Daniel & Brave, Scott A. & Butters, R. Andrew & Fogarty, Michael & Sacks, Daniel W. & Seo, Boyoung, 2022. "Forecasting unemployment insurance claims in realtime with Google Trends," International Journal of Forecasting, Elsevier, vol. 38(2), pages 567-581.
    10. Frederico Godinho & Katja Neugebauer, 2025. "House Hunting High and Low: Constructing a Housing Search Index for Portugal," Working Papers w202507, Banco de Portugal, Economics and Research Department.
    11. Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
    12. Takumi Ito & Fumiko Takeda, 2022. "Do sentiment indices always improve the prediction accuracy of exchange rates?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 840-852, July.
    13. Costanza Catalano & Andrea Carboni & Claudio Doria, 2023. "How can Big Data improve the quality of tourism statistics? The Bank of Italy's experience in compiling the "travel" item in the Balance of Payments," Questioni di Economia e Finanza (Occasional Papers) 761, Bank of Italy, Economic Research and International Relations Area.
    14. Lolić, Ivana & Matošec, Marina & Sorić, Petar, 2024. "DIY google trends indicators in social sciences: A methodological note," Technology in Society, Elsevier, vol. 77(C).
    15. Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
    16. Monge, Manuel & Claudio-Quiroga, Gloria & Poza, Carlos, 2024. "Chinese economic behavior in times of covid-19. A new leading economic indicator based on Google trends," International Economics, Elsevier, vol. 177(C).
    17. Nikolaos Askitas & Klaus F. Zimmermann, 2015. "The internet as a data source for advancement in social sciences," International Journal of Manpower, Emerald Group Publishing Limited, vol. 36(1), pages 2-12, April.
    18. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    19. Puhr, Harald & Müllner, Jakob, 2024. "Vox populi, vox dei: A concept and measure for grassroots socio-political risk using Google Trends," Journal of International Management, Elsevier, vol. 30(2).
    20. Chi, Tsung-Li & Liu, Hung-Tsen & Chang, Chia-Chien, 2023. "Hedging performance using google Trends–Evidence from the indian forex options market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 107-123.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fda:fdaddt:2025-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carmen Arias (email available below). General contact details of provider: https://www.fedea.net .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.