IDEAS home Printed from https://ideas.repec.org/p/bbh/wpaper/25-04.html
   My bibliography  Save this paper

Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables

Author

Listed:
  • Philippe Goulet Coulombe

    (University of Quebec in Montreal)

  • Massimiliano Marcellino

    (Bocconi University)

  • Dalibor Stevanovic

    (University of Quebec in Montreal)

Abstract

We study the nowcasting of U.S. state-level fiscal variables using machine learning (ML) models and mixed-frequency predictors within a panel framework. Neural networks with continuous and categorical embeddings consistently outperform both linear and nonlinear alternatives, especially when combined with pooled panel structures. These architectures flexibly capture differences across states while benefiting from shared patterns in the panel structure. Forecast gains are especially large for volatile variables like expenditures and deficits. Pooling enhances forecast stability, and ML models are better suited to handle crosssectional nonlinearities. Results show that predictive improvements are broad-based and that even a few high-frequency state indicators contribute substantially to forecast accuracy. Our findings highlight the complementarity between flexible modeling and cross sectional pooling, making panel neural networks a powerful tool for timely and accurate fiscal monitoring in heterogeneous settings.

Suggested Citation

  • Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2025. "Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables," Working Papers 25-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised May 2025.
  • Handle: RePEc:bbh:wpaper:25-04
    as

    Download full text from publisher

    File URL: https://chairemacro.esg.uqam.ca/wp-content/uploads/sites/146/GCMS_PanelMLNowcastingFiscal.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    2. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
    3. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    6. M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2022. "Forecasting With Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity," CESifo Working Paper Series 9690, CESifo.
    7. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    8. Teresa Leal & Javier J. Pérez & Mika Tujula & Jean-Pierre Vidal, 2008. "Fiscal Forecasting: Lessons from the Literature and Challenges," Fiscal Studies, Institute for Fiscal Studies, vol. 29(3), pages 347-386, September.
    9. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    10. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    11. Niko Hauzenberger & Massimiliano Marcellino & Michael Pfarrhofer & Anna Stelzer, 2024. "Nowcasting with Mixed Frequency Data Using Gaussian Processes," Papers 2402.10574, arXiv.org, revised Sep 2024.
    12. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    13. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    14. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    15. Onorante, Luca & Pedregal, Diego J. & Pérez, Javier J. & Signorini, Sara, 2010. "The usefulness of infra-annual government cash budgetary data for fiscal forecasting in the euro area," Journal of Policy Modeling, Elsevier, vol. 32(1), pages 98-119, January.
    16. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    17. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    18. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    19. Eric Ghysels & Fotis Grigoris & Nazire Özkan, 2022. "Real-time Forecasts of State and Local Government Budgets with an Application to the COVID-19 Pandemic," National Tax Journal, University of Chicago Press, vol. 75(4), pages 731-763.
    20. Jack Fosten & Ryan Greenaway-McGrevy, 2022. "Panel data nowcasting," Econometric Reviews, Taylor & Francis Journals, vol. 41(7), pages 675-696, August.
    21. Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2019. "Mixed‐frequency models with moving‐average components," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 688-706, August.
    22. Qu, Ritong & Timmermann, Allan & Zhu, Yinchu, 2024. "Comparing forecasting performance with panel data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 918-941.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    3. Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
    4. Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
      • Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
    5. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    6. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    7. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
    8. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    9. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    10. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    11. Philippe Goulet Coulombe & Maximilian Gobel, 2023. "Maximally Machine-Learnable Portfolios," Working Papers 23-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2023.
    12. Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
    13. Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
    14. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
    15. Zin Mar Oo & Ching‐Yang Lin & Makoto Kakinaka, 2025. "Deciphering Long‐Term Economic Growth: An Exploration With Leading Machine Learning Techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1531-1562, July.
    16. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
    17. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    18. Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Economic Modelling, Elsevier, vol. 120(C).
    19. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    20. Liu, Han & Chen, Yuxiu & Hu, Mingming & Chen, Jason Li, 2025. "Forecast by mixed-frequency dynamic panel model," Annals of Tourism Research, Elsevier, vol. 110(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • H72 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Budget and Expenditures

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbh:wpaper:25-04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dalibor Stevanovic and Alain Guay (email available below). General contact details of provider: https://edirc.repec.org/data/cmuqmca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.