IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.13076.html
   My bibliography  Save this paper

Dual Interpretation of Machine Learning Forecasts

Author

Listed:
  • Philippe Goulet Coulombe
  • Maximilian Goebel
  • Karin Klieber

Abstract

Machine learning predictions are typically interpreted as the sum of contributions of predictors. Yet, each out-of-sample prediction can also be expressed as a linear combination of in-sample values of the predicted variable, with weights corresponding to pairwise proximity scores between current and past economic events. While this dual route leads nowhere in some contexts (e.g., large cross-sectional datasets), it provides sparser interpretations in settings with many regressors and little training data-like macroeconomic forecasting. In this case, the sequence of contributions can be visualized as a time series, allowing analysts to explain predictions as quantifiable combinations of historical analogies. Moreover, the weights can be viewed as those of a data portfolio, inspiring new diagnostic measures such as forecast concentration, short position, and turnover. We show how weights can be retrieved seamlessly for (kernel) ridge regression, random forest, boosted trees, and neural networks. Then, we apply these tools to analyze post-pandemic forecasts of inflation, GDP growth, and recession probabilities. In all cases, the approach opens the black box from a new angle and demonstrates how machine learning models leverage history partly repeating itself.

Suggested Citation

  • Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
  • Handle: RePEc:arx:papers:2412.13076
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.13076
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kathryn M. E. Dominguez & Matthew D. Shapiro, 2013. "Forecasting the Recovery from the Great Recession: Is This Time Different?," American Economic Review, American Economic Association, vol. 103(3), pages 147-152, May.
    2. Meyer, Brent H. & Prescott, Brian & Sheng, Xuguang Simon, 2022. "The impact of the COVID-19 pandemic on business expectations," International Journal of Forecasting, Elsevier, vol. 38(2), pages 529-544.
    3. Y. Dendramis & G. Kapetanios & M. Marcellino, 2020. "A similarity‐based approach for macroeconomic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 801-827, June.
    4. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    5. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    6. Sylvia Kaufmann & Christian Schumacher, 2017. "Identifying relevant and irrelevant variables in sparse factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1123-1144, September.
    7. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    8. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    9. Joshua D. Angrist & Òscar Jordà & Guido M. Kuersteiner, 2018. "Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 371-387, July.
    10. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    11. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    12. Mingshu Li & Bhaskarjit Sarmah & Dhruv Desai & Joshua Rosaler & Snigdha Bhagat & Philip Sommer & Dhagash Mehta, 2024. "Quantile Regression using Random Forest Proximities," Papers 2408.02355, arXiv.org.
    13. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    14. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    15. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    16. Laurence Ball & Daniel Leigh & Prachi Mishra, 2022. "Understanding US Inflation during the COVID-19 Era," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 53(2 (Fall)), pages 1-80.
    17. Niko Hauzenberger & Massimiliano Marcellino & Michael Pfarrhofer & Anna Stelzer, 2024. "Nowcasting with Mixed Frequency Data Using Gaussian Processes," Papers 2402.10574, arXiv.org, revised Sep 2024.
    18. Florian Huber & Gary Koop & Luca Onorante, 2021. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
    19. repec:oup:ecpoli:v:29:y:2014:i:79:p:447-493 is not listed on IDEAS
    20. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    21. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    22. Blanchard, Olivier Jean, 1993. "Consumption and the Recession of 1990-1991," American Economic Review, American Economic Association, vol. 83(2), pages 270-274, May.
    23. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    24. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    25. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    26. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    27. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    28. Joshua D. Angrist & Guido M. Kuersteiner, 2011. "Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 725-747, August.
    29. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    30. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Post-Print halshs-03956392, HAL.
    31. Bobeica, Elena & Hartwig, Benny, 2023. "The COVID-19 shock and challenges for inflation modelling," International Journal of Forecasting, Elsevier, vol. 39(1), pages 519-539.
    32. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    33. Selin Sayek & Fatma Taskin, 2014. "Financial crises: lessons from history for today [Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(79), pages 447-493.
    34. Markus K. Brunnermeier, 2009. "Deciphering the Liquidity and Credit Crunch 2007-2008," Journal of Economic Perspectives, American Economic Association, vol. 23(1), pages 77-100, Winter.
    35. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE-Ecole d'économie de Paris (Postprint) halshs-03956392, HAL.
    36. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    37. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    38. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
    39. John G. Fernald & Robert E. Hall & James H. Stock & Mark W. Watson, 2018. "The Disappointing Recovery in U.S. Output after 2009," FRBSF Economic Letter, Federal Reserve Bank of San Francisco.
    40. Thomas Despois & Catherine Doz, 2023. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 533-555, June.
    41. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    42. Marcus Buckmann & Andreas Joseph, 2023. "An Interpretable Machine Learning Workflow with an Application to Economic Forecasting," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 449-522, October.
    43. Allen Sinai, 2010. "The Business Cycle in a Changing Economy: Conceptualization, Measurement, Dating," American Economic Review, American Economic Association, vol. 100(2), pages 25-29, May.
    44. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    3. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    4. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
    5. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    6. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    7. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    8. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    9. Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
    10. Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
    11. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    12. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    13. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    14. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    15. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
    16. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    17. Szafranek, Karol & Szafrański, Grzegorz & Leszczyńska-Paczesna, Agnieszka, 2024. "Inflation returns. Revisiting the role of external and domestic shocks with Bayesian structural VAR," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 789-810.
    18. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    19. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    20. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.13076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.