IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/14469.html
   My bibliography  Save this paper

A Similarity-based Approach for Macroeconomic Forecasting

Author

Listed:
  • Marcellino, Massimiliano
  • Kapetanios, George
  • Dendramis, Yiannis

Abstract

In the aftermath of the recent financial crisis there has been considerable focus on methods for predicting macroeconomic variables when their behavior is subject to abrupt changes, associated for example with crisis periods. In this paper we propose similarity based approaches as a way to handle parameter instability, and apply them to macroeconomic forecasting. The rationale is that clusters of past data that match the current economic conditions can be more informative for forecasting than the entire past behavior of the variable of interest. We apply our methods to predict both simulated data in a set of Monte Carlo experiments, and a broad set of key US macroeconomic indicators. The forecast evaluation exercises indicate that similarity-based approaches perform well, in general, in comparison with other common time-varying forecasting methods, and particularly well during crisis episodes.

Suggested Citation

  • Marcellino, Massimiliano & Kapetanios, George & Dendramis, Yiannis, 2020. "A Similarity-based Approach for Macroeconomic Forecasting," CEPR Discussion Papers 14469, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:14469
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP14469
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
    2. Liudas Giraitis & George Kapetanios & Tony Yates, 2018. "Inference on Multivariate Heteroscedastic Time Varying Random Coefficient Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 129-149, March.
    3. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643.
    4. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    5. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    6. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    9. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    10. Eklund, Jana & Kapetanios, George & Price, Simon, 2010. "Forecasting in the presence of recent structural change," Bank of England working papers 406, Bank of England.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423.
    12. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    13. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    14. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    15. Pesaran, M. Hashem & Pick, Andreas & Timmermann, Allan, 2011. "Variable selection, estimation and inference for multi-period forecasting problems," Journal of Econometrics, Elsevier, vol. 164(1), pages 173-187, September.
    16. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    17. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    18. Timothy Cogley & Thomas J. Sargent, 2005. "The conquest of US inflation: Learning and robustness to model uncertainty," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 528-563, April.
    19. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    20. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    21. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    22. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    23. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    24. Hendry, David F., 2000. "On detectable and non-detectable structural change," Structural Change and Economic Dynamics, Elsevier, vol. 11(1-2), pages 45-65, July.
    25. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    2. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
    3. Dong Hwan Oh & Andrew J. Patton, 2021. "Better the Devil You Know: Improved Forecasts from Imperfect Models," Finance and Economics Discussion Series 2021-071, Board of Governors of the Federal Reserve System (U.S.).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    7. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    8. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    9. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
    10. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    11. Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
    12. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    13. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    14. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    15. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    16. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    17. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    18. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    19. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    20. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.

    More about this item

    Keywords

    Macroeconomic forecasting; Forecast comparison; Empirical similarity; Parameter time variation; Kernel estimation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:14469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.