IDEAS home Printed from https://ideas.repec.org/p/crt/wpaper/0502.html
   My bibliography  Save this paper

Regime Switching and Artificial Neural Network Forecasting

Author

Listed:
  • Eleni Constantinou

    (Department of Accounting and Finance, The Philips College, 4-6 Lamias Street, CY-2100, Nicosia,)

  • Robert Georgiades

    (Department of Accounting and Finance, The Philips College, 4-6 Lamias Street, CY-2100, Nicosia,)

  • Avo Kazandjian

    (Department of Business Studies, The Philips College, 4-6 Lamias Street, CY-2100, Nicosia, Cyprus.)

  • George Kouretas

    () (Department of Economics, University of Crete, Greece)

Abstract

This paper provides an analysis of regime switching in volatility and out-of-sample forecasting of the Cyprus Stock Exchange using daily data for the period 1996-2002. We first model volatility regime switching within a univariate Markov-Switching framework. Modelling stock returns within this context can be motivated by the fact that the change in regime should be considered as a random event and not predictable. The results show that linearity is rejected in favour of a MS specification, which forms statistically an adequate representation of the data. Two regimes are implied by the model; the high volatility regime and the low volatility one and they provide quite accurately the state of volatility associated with the presence of a rational bubble in the capital market of Cyprus. Another implication is that there is evidence of regime clustering. We then provide out-of-sample forecasts of the CSE daily returns using two competing non-linear models, the univariate Markov Switching model and the Artificial Neural Network Model. The comparison of the out-of-sample forecasts is done on the basis of forecast accuracy, using the Diebold and Mariano (1995) test and forecast encompassing, using the Clements and Hendry (1998) test. The results suggest that both non-linear models equivalent in forecasting accuracy and forecasting encompassing and therefore on forecasting performance.

Suggested Citation

  • Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Regime Switching and Artificial Neural Network Forecasting," Working Papers 0502, University of Crete, Department of Economics.
  • Handle: RePEc:crt:wpaper:0502
    as

    Download full text from publisher

    File URL: http://economics.soc.uoc.gr/wpa/docs/regime.pdf
    File Function: First version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kanas, Angelos, 2001. "Neural Network Linear Forecasts for Stock Returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 245-254, July.
    2. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    3. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, pages 151-165.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    5. Sephton, Peter S., 1995. "Response surface estimates of the KPSS stationarity test," Economics Letters, Elsevier, vol. 47(3-4), pages 255-261, March.
    6. Andersen, Torben G., 1998. "The Econometrics Of Financial Markets," Econometric Theory, Cambridge University Press, vol. 14(05), pages 671-685, October.
    7. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    8. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    9. Elliott, Graham, 1999. "Efficient Tests for a Unit Root When the Initial Observation Is Drawn from Its Unconditional Distribution," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(3), pages 767-783, August.
    10. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    11. Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003. "On SETAR non-linearity and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
    12. Coe, Patrick J, 2002. "Financial Crisis and the Great Depression: A Regime Switching Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 76-93, February.
    13. Kanas, Angelos & Kouretas, Georgios P., 2007. "Regime dependence between the official and parallel foreign currency markets for US dollars in Greece," Journal of Macroeconomics, Elsevier, pages 431-449.
    14. William A. Brock, 1993. "Pathways to randomness in the economy: Emergent nonlinearity and chaos in economics and finance," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 8(1), pages 3-55.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Perron, Pierre & Rodriguez, Gabriel, 2003. "GLS detrending, efficient unit root tests and structural change," Journal of Econometrics, Elsevier, vol. 115(1), pages 1-27, July.
    17. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    18. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, November.
    19. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    20. Campbell, John Y. & Lo, Andrew W. & MacKinlay, A. Craig & Whitelaw, Robert F., 1998. "The Econometrics Of Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 2(04), pages 559-562, December.
    21. Lucas, Robert Jr, 1976. "Econometric policy evaluation: A critique," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 1(1), pages 19-46, January.
    22. Kanas, Angelos, 2005. "Regime linkages between the Mexican currency market and emerging equity markets," Economic Modelling, Elsevier, vol. 22(1), pages 109-125, January.
    23. Edwards, Sebastian & Susmel, Raul, 2001. "Volatility dependence and contagion in emerging equity markets," Journal of Development Economics, Elsevier, pages 505-532.
    24. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    25. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    26. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    27. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    28. Hamilton, James D., 1996. "Specification testing in Markov-switching time-series models," Journal of Econometrics, Elsevier, vol. 70(1), pages 127-157, January.
    29. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    30. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    31. Kanas, Angelos & Yannopoulos, Andreas, 2001. "Comparing linear and nonlinear forecasts for stock returns," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 383-398, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Regime switching; artificial neural networks; stock returns; forecast;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crt:wpaper:0502. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kostis Pigounakis). General contact details of provider: http://edirc.repec.org/data/deuchgr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.