IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01635951.html

Macroeconomic forecasting during the Great Recession: the return of non-linearity?

Author

Listed:
  • Laurent Ferrara

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Massimiliano Marcellino
  • Matteo Mogliani

Abstract

The debate on the forecasting ability of non-linear models has a long history, and the Great Recession episode provides us with an interesting opportunity for a reassessment of the forecasting performance of several classes of nonlinear models. We conduct an extensive analysis over a large quarterly database consisting of major macroeconomic variables for a large panel of countries. It turns out that, on average, non-linear models cannot outperform standard linear specifications, even during the Great Recession. However, non-linear models lead to an improvement of the predictive accuracy in almost 40% of cases, and interesting specific patterns emerge among models, variables and countries. These results suggest that this specific episode seems to be characterized by a sequence of shocks with unusual large magnitude, rather than by an increase in the degree of non-linearity of the stochastic processes underlying the main macroeconomic time series.

Suggested Citation

  • Laurent Ferrara & Massimiliano Marcellino & Matteo Mogliani, 2015. "Macroeconomic forecasting during the Great Recession: the return of non-linearity?," Post-Print hal-01635951, HAL.
  • Handle: RePEc:hal:journl:hal-01635951
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    ;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01635951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.