IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.13222.html
   My bibliography  Save this paper

An Adaptive Moving Average for Macroeconomic Monitoring

Author

Listed:
  • Philippe Goulet Coulombe
  • Karin Klieber

Abstract

The use of moving averages is pervasive in macroeconomic monitoring, particularly for tracking noisy series such as inflation. The choice of the look-back window is crucial. Too long of a moving average is not timely enough when faced with rapidly evolving economic conditions. Too narrow averages are noisy, limiting signal extraction capabilities. As is well known, this is a bias-variance trade-off. However, it is a time-varying one: the optimal size of the look-back window depends on current macroeconomic conditions. In this paper, we introduce a simple adaptive moving average estimator based on a Random Forest using as sole predictor a time trend. Then, we compare the narratives inferred from the new estimator to those derived from common alternatives across series such as headline inflation, core inflation, and real activity indicators. Notably, we find that this simple tool provides a different account of the post-pandemic inflation acceleration and subsequent deceleration.

Suggested Citation

  • Philippe Goulet Coulombe & Karin Klieber, 2025. "An Adaptive Moving Average for Macroeconomic Monitoring," Papers 2501.13222, arXiv.org.
  • Handle: RePEc:arx:papers:2501.13222
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.13222
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    4. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    5. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    6. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    7. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    8. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    9. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    10. Robert E. Hall, 2023. "A Major Shock Makes Prices More Flexible and May Result in a Burst of Inflation or Deflation," NBER Working Papers 31025, National Bureau of Economic Research, Inc.
    11. Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
    12. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.
    13. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    14. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    15. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    2. Florian Huber & Michael Pfarrhofer & Philipp Piribauer, 2020. "A multi‐country dynamic factor model with stochastic volatility for euro area business cycle analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 911-926, September.
    3. Ringwald, Leopold & Zörner, Thomas O., 2023. "The money-inflation nexus revisited," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 293-333.
    4. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    5. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    6. Florian Eckert & Samad Sarferaz, 2019. "Agnostic Output Gap Estimation and Decomposition in Large Cross-Sections," KOF Working papers 19-467, KOF Swiss Economic Institute, ETH Zurich.
    7. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    8. Alessandro Barbarino & Travis J. Berge & Han Chen & Andrea Stella, 2020. "Which Output Gap Estimates Are Stable in Real Time and Why?," Finance and Economics Discussion Series 2020-102, Board of Governors of the Federal Reserve System (U.S.).
    9. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
    10. Conti, Antonio M., 2021. "Resurrecting the Phillips Curve in Low-Inflation Times," Economic Modelling, Elsevier, vol. 96(C), pages 172-195.
    11. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
    12. Matteo Barigozzi & Claudio Lissona & Matteo Luciani, 2024. "Measuring the Euro Area Output Gap," Finance and Economics Discussion Series 2024-099, Board of Governors of the Federal Reserve System (U.S.).
    13. Kabundi, Alain & Poon, Aubrey & Wu, Ping, 2023. "A time-varying Phillips curve with global factors: Are global factors important?," Economic Modelling, Elsevier, vol. 126(C).
    14. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    15. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    16. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    17. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    18. Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
    19. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    20. Verbrugge, Randal & Zaman, Saeed, 2023. "The hard road to a soft landing: Evidence from a (modestly) nonlinear structural model," Energy Economics, Elsevier, vol. 123(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.13222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.