IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2020-102.html
   My bibliography  Save this paper

Which Output Gap Estimates Are Stable in Real Time and Why?

Author

Abstract

Output gaps that are estimated in real time can differ substantially from those estimated after the fact. We aim to understand the real-time instability of output gap estimates by comparing a suite of reduced-form models. We propose a new statistical decomposition and find that including a Okun’s law relationship improves real-time stability by alleviating the end-point problem. Models that include the unemployment rate also produce output gaps with relevant economic content. However, we find that no model of the output gap is clearly superior to the others along each metric we consider.

Suggested Citation

  • Alessandro Barbarino & Travis J. Berge & Han Chen & Andrea Stella, 2020. "Which Output Gap Estimates Are Stable in Real Time and Why?," Finance and Economics Discussion Series 2020-102, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2020-102
    DOI: 10.17016/FEDS.2020.102
    as

    Download full text from publisher

    File URL: https://www.federalreserve.gov/econres/feds/which-output-gap-estimates-are-stable-in-real-time-and-why.htm
    Download Restriction: no

    File URL: https://libkey.io/10.17016/FEDS.2020.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Dotsey & Shigeru Fujita & Tom Stark, 2018. "Do Phillips Curves Conditionally Help to Forecast Inflation?," International Journal of Central Banking, International Journal of Central Banking, vol. 14(4), pages 43-92, September.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. James Morley & Benjamin Wong, 2020. "Estimating and accounting for the output gap with large Bayesian vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 1-18, January.
    4. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation," American Economic Journal: Macroeconomics, American Economic Association, vol. 7(1), pages 197-232, January.
    5. Koopman, Siem Jan & Harvey, Andrew, 2003. "Computing observation weights for signal extraction and filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1317-1333, May.
    6. Douglas Staiger & James H. Stock & Mark W. Watson, 1997. "The NAIRU, Unemployment and Monetary Policy," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 33-49, Winter.
    7. Manuel Gonzalez-Astudillo & John M. Roberts, 2016. "When Can Trend-Cycle Decompositions Be Trusted?," Finance and Economics Discussion Series 2016-099, Board of Governors of the Federal Reserve System (U.S.).
    8. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    9. Anthony Garratt & Kevin Lee & Emi Mise & Kalvinder Shields, 2008. "Real-Time Representations of the Output Gap," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 792-804, November.
    10. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    11. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    12. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    13. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    14. Chang‐Jin Kim & Pym Manopimoke & Charles R. Nelson, 2014. "Trend Inflation and the Nature of Structural Breaks in the New Keynesian Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(2-3), pages 253-266, March.
    15. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    16. Christophe Planas & Alessandro Rossi, 2004. "Can inflation data improve the real-time reliability of output gap estimates?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 121-133.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    19. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    20. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    21. Kuttner, Kenneth N, 1994. "Estimating Potential Output as a Latent Variable," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 361-368, July.
    22. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    23. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    24. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berger, Tino & Richter, Julia & Wong, Benjamin, 2022. "A unified approach for jointly estimating the business and financial cycle, and the role of financial factors," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    2. Júlio, Paulo & Maria, José R., 2024. "Trends and cycles during the COVID-19 pandemic period," Economic Modelling, Elsevier, vol. 139(C).
    3. Morley, James & Rodríguez-Palenzuela, Diego & Sun, Yiqiao & Wong, Benjamin, 2023. "Estimating the euro area output gap using multivariate information and addressing the COVID-19 pandemic," European Economic Review, Elsevier, vol. 153(C).
    4. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
    5. Saeed Zaman, 2021. "A Unified Framework to Estimate Macroeconomic Stars," Working Papers 21-23R2, Federal Reserve Bank of Cleveland, revised 31 May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Hasenzagl & Filippo Pellegrino & Lucrezia Reichlin & Giovanni Ricco, 2022. "A Model of the Fed's View on Inflation," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 686-704, October.
    2. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    3. Nataliia Ostapenko, 2022. "Do output gap estimates improve inflation forecasts in Slovakia?," Working and Discussion Papers WP 4/2022, Research Department, National Bank of Slovakia.
    4. Chalmovianský, Jakub & Němec, Daniel, 2022. "Assessing uncertainty of output gap estimates: Evidence from Visegrad countries," Economic Modelling, Elsevier, vol. 116(C).
    5. Clark, Todd E. & Kozicki, Sharon, 2005. "Estimating equilibrium real interest rates in real time," The North American Journal of Economics and Finance, Elsevier, vol. 16(3), pages 395-413, December.
    6. Orphanides, Athanasios & van Norden, Simon, 2005. "The Reliability of Inflation Forecasts Based on Output Gap Estimates in Real Time," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 583-601, June.
    7. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    8. Panovska, Irina & Ramamurthy, Srikanth, 2022. "Decomposing the output gap with inflation learning," Journal of Economic Dynamics and Control, Elsevier, vol. 136(C).
    9. repec:spo:wpmain:info:hdl:2441/784ilbkihi9tkblnh7q2514823 is not listed on IDEAS
    10. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    11. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    12. repec:hal:spmain:info:hdl:2441/784ilbkihi9tkblnh7q2514823 is not listed on IDEAS
    13. Biolsi, Christopher, 2023. "Do the Hamilton and Beveridge–Nelson filters provide the same information about output gaps? An empirical comparison for practitioners," Journal of Macroeconomics, Elsevier, vol. 75(C).
    14. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
    15. Jean-Philippe Cayen & Simon van Norden, 2002. "La fiabilité des estimations de l'écart de production au Canada," Staff Working Papers 02-10, Bank of Canada.
    16. Aastveit, Knut Are & Trovik, Tørres, 2014. "Estimating the output gap in real time: A factor model approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 180-193.
    17. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    18. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    19. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    20. Felipe Morandé Lavín & Mauricio Tejada, 2008. "Sources of Uncertainty for Conducting Monetary Policy in Chile," Working Papers wp285, University of Chile, Department of Economics.
    21. Florian Eckert & Samad Sarferaz, 2019. "Agnostic Output Gap Estimation and Decomposition in Large Cross-Sections," KOF Working papers 19-467, KOF Swiss Economic Institute, ETH Zurich.
    22. Mandler, Martin, 2007. "Decomposing Federal Funds Rate forecast uncertainty using real-time data," MPRA Paper 13498, University Library of Munich, Germany, revised Jan 2009.

    More about this item

    Keywords

    Output gap; Real-time data; Trend-cycle decomposition; unobserved component model;
    All these keywords.

    JEL classification:

    • E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2020-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.