IDEAS home Printed from https://ideas.repec.org/p/een/camaaa/2017-46.html

Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions

Author

Listed:
  • James Morley
  • Benjamin Wong

Abstract

We demonstrate how Bayesian shrinkage can address problems with utilizing large information sets to calculate trend and cycle via a multivariate Beveridge-Nelson (BN) decomposition. We illustrate our approach by estimating the U.S. output gap with large Bayesian vector autoregressions that include up to 138 variables. Because the BN trend and cycle are linear functions of historical forecast errors, we are also able to account for the estimated output gap in terms of different sources of information, as well as particular underlying structural shocks given identification restrictions. Our empirical analysis suggests that, in addition to output growth, the unemployment rate, CPI inflation, and, to a lesser extent, housing starts, consumption, stock prices, real M1, and the federal funds rate are important conditioning variables for estimating the U.S. output gap, with estimates largely robust to incorporating additional variables. Using standard identification restrictions, we find that the role of monetary policy shocks in driving the output gap is small, while oil price shocks explain about 10% of the variance over different horizons.

Suggested Citation

  • James Morley & Benjamin Wong, 2017. "Estimating and Accounting for the Output Gap with Large Bayesian Vector Autoregressions," CAMA Working Papers 2017-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  • Handle: RePEc:een:camaaa:2017-46
    as

    Download full text from publisher

    File URL: https://crawford.anu.edu.au/sites/default/files/2025-01/46_2017_morley_wong.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:een:camaaa:2017-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cama Admin (email available below). General contact details of provider: https://edirc.repec.org/data/asanuau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.