IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.12422.html
   My bibliography  Save this paper

Opening the Black Box of Local Projections

Author

Listed:
  • Philippe Goulet Coulombe
  • Karin Klieber

Abstract

Local projections (LPs) are widely used in empirical macroeconomics to estimate impulse responses to policy interventions. Yet, in many ways, they are black boxes. It is often unclear what mechanism or historical episodes drive a particular estimate. We introduce a new decomposition of LP estimates into the sum of contributions of historical events, which is the product, for each time stamp, of a weight and the realization of the response variable. In the least squares case, we show that these weights admit two interpretations. First, they represent purified and standardized shocks. Second, they serve as proximity scores between the projected policy intervention and past interventions in the sample. Notably, this second interpretation extends naturally to machine learning methods, many of which yield impulse responses that, while nonlinear in predictors, still aggregate past outcomes linearly via proximity-based weights. Applying this framework to shocks in monetary and fiscal policy, global temperature, and the excess bond premium, we find that easily identifiable events-such as Nixon's interference with the Fed, stagflation, World War II, and the Mount Agung volcanic eruption-emerge as dominant drivers of often heavily concentrated impulse response estimates.

Suggested Citation

  • Philippe Goulet Coulombe & Karin Klieber, 2025. "Opening the Black Box of Local Projections," Papers 2505.12422, arXiv.org.
  • Handle: RePEc:arx:papers:2505.12422
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.12422
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Christina D. Romer & David H. Romer, 2004. "A New Measure of Monetary Shocks: Derivation and Implications," American Economic Review, American Economic Association, vol. 94(4), pages 1055-1084, September.
    3. Markus K. Brunnermeier & Yuliy Sannikov, 2014. "A Macroeconomic Model with a Financial Sector," American Economic Review, American Economic Association, vol. 104(2), pages 379-421, February.
    4. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    5. Philippe Goulet Coulombe, 2024. "The macroeconomy as a random forest," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 401-421, April.
    6. Cloyne, James & Jordà , Òscar & Taylor, Alan M., 2023. "State-Dependent Local Projections: Understanding Impulse Response Heterogeneity," CEPR Discussion Papers 17903, C.E.P.R. Discussion Papers.
    7. Bachmann, Rüdiger & Sims, Eric R., 2012. "Confidence and the transmission of government spending shocks," Journal of Monetary Economics, Elsevier, vol. 59(3), pages 235-249.
    8. Valerie A. Ramey, 2011. "Identifying Government Spending Shocks: It's all in the Timing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 1-50.
    9. Christiano, Lawrence J & Eichenbaum, Martin & Evans, Charles, 1996. "The Effects of Monetary Policy Shocks: Evidence from the Flow of Funds," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 16-34, February.
    10. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    11. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    12. Joshua D. Angrist & Òscar Jordà & Guido M. Kuersteiner, 2018. "Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 371-387, July.
    13. Dake Li & Mikkel Plagborg-Møller & Christian K. Wolf, 2021. "Local Projections vs. VARs: Lessons From Thousands of DGPs," Working Papers 2021-55, Princeton University. Economics Department..
    14. Ben S. Bernanke & Mark Gertler & Mark Watson, 1997. "Systematic Monetary Policy and the Effects of Oil Price Shocks," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 28(1), pages 91-157.
    15. Brissimis, Sophocles N. & Magginas, Nicholas S., 2006. "Forward-looking information in VAR models and the price puzzle," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1225-1234, September.
    16. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    17. Drechsel, Thomas, 2023. "Estimating the Effects of Political Pressure on the Fed: A Narrative Approach with New Data," CEPR Discussion Papers 18612, C.E.P.R. Discussion Papers.
    18. Mario Forni & Luca Gambetti & Nicolò Maffei‐Faccioli & Luca Sala, 2024. "Nonlinear Transmission of Financial Shocks: Some New Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(1), pages 5-33, February.
    19. Aruoba, Boragan & Drechsel, Thomas, 2022. "Identifying Monetary Policy Shocks: A Natural Language Approach," CEPR Discussion Papers 17133, C.E.P.R. Discussion Papers.
    20. Lin, Yi & Jeon, Yongho, 2006. "Random Forests and Adaptive Nearest Neighbors," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 578-590, June.
    21. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    22. Markus K. Brunnermeier & Yuliy Sannikov, 2012. "A macroeconomic model with a financial sector," Working Paper Research 236, National Bank of Belgium.
    23. Silva Paranhos, Livia, 2024. "How do firms’ financial conditions influence the transmission of monetary policy? A non-parametric local projection approach," Bank of England working papers 1100, Bank of England.
    24. Nadav Ben Zeev & Valerie A. Ramey & Sarah Zubairy, 2023. "Do Government Spending Multipliers Depend on the Sign of the Shock?," AEA Papers and Proceedings, American Economic Association, vol. 113, pages 382-387, May.
    25. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    26. Adrien Bilal & Diego R. Känzig, 2024. "The Macroeconomic Impact of Climate Change: Global vs. Local Temperature," NBER Working Papers 32450, National Bureau of Economic Research, Inc.
    27. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Machine learning the macroeconomic effects of financial shocks," Economics Letters, Elsevier, vol. 250(C).
    28. Regis Barnichon & Christian Matthes & Alexander Ziegenbein, 2022. "Are the Effects of Financial Market Disruptions Big or Small?," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 557-570, May.
    29. Yuriy Gorodnichenko & Byoungchan Lee, 2020. "Forecast Error Variance Decompositions with Local Projections," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 921-933, October.
    30. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    31. Marcelo C. Medeiros & Gabriel F. R. Vasconcelos & Álvaro Veiga & Eduardo Zilberman, 2021. "Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 98-119, January.
    32. Nadav Ben Zeev & Evi Pappa, 2017. "Chronicle of a War Foretold: The Macroeconomic Effects of Anticipated Defence Spending Shocks," Economic Journal, Royal Economic Society, vol. 127(603), pages 1568-1597, August.
    33. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    34. Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
    35. Emi Nakamura & Jón Steinsson, 2018. "Identification in Macroeconomics," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 59-86, Summer.
    36. Emi Nakamura & Jón Steinsson, 2018. "High-Frequency Identification of Monetary Non-Neutrality: The Information Effect," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1283-1330.
    37. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2024. "State-dependent local projections," Journal of Econometrics, Elsevier, vol. 244(2).
    38. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    39. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    40. Nadav Ben Zeev & Evi Pappa, 2017. "Chronicle of a War Foretold: The Macroeconomic Effects of Anticipated Defence Spending Shocks," Economic Journal, Royal Economic Society, vol. 127(603), pages 1568-1597, August.
    41. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    42. Li, Dake & Plagborg-Møller, Mikkel & Wolf, Christian K., 2024. "Local projections vs. VARs: Lessons from thousands of DGPs," Journal of Econometrics, Elsevier, vol. 244(2).
    43. Hanson, Michael S., 2004. "The "price puzzle" reconsidered," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1385-1413, October.
    44. Florian Huber & Christian Matthes & Michael Pfarrhofer, 2024. "General Seemingly Unrelated Local Projections," Papers 2410.17105, arXiv.org, revised Dec 2024.
    45. Lutz Kilian & Yun Jung Kim, 2011. "How Reliable Are Local Projection Estimators of Impulse Responses?," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1460-1466, November.
    46. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    47. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    48. Pascal Paul, 2020. "The Time-Varying Effect of Monetary Policy on Asset Prices," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 690-704, October.
    49. Marcus Buckmann & Andreas Joseph, 2023. "An Interpretable Machine Learning Workflow with an Application to Economic Forecasting," International Journal of Central Banking, International Journal of Central Banking, vol. 19(4), pages 449-522, October.
    50. Herbst, Edward P. & Johannsen, Benjamin K., 2024. "Bias in local projections," Journal of Econometrics, Elsevier, vol. 240(1).
    51. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    52. Yitzhaki, Shlomo, 1996. "On Using Linear Regressions in Welfare Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 478-486, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Òscar Jordà & Alan M. Taylor, 2024. "Local Projections," NBER Working Papers 32822, National Bureau of Economic Research, Inc.
    2. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    3. Li, Dake & Plagborg-Møller, Mikkel & Wolf, Christian K., 2024. "Local projections vs. VARs: Lessons from thousands of DGPs," Journal of Econometrics, Elsevier, vol. 244(2).
    4. Mario Di Serio & Matteo Fragetta & Emanuel Gasteiger & Giovanni Melina, 2024. "The Euro Area Government Spending Multiplier in Demand‐ and Supply‐Driven Recessions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(6), pages 1342-1372, December.
    5. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2024. "State-dependent local projections," Journal of Econometrics, Elsevier, vol. 244(2).
    6. Ferrara, Laurent & Metelli, Luca & Natoli, Filippo & Siena, Daniele, 2021. "Questioning the puzzle: Fiscal policy, real exchange rate and inflation," Journal of International Economics, Elsevier, vol. 133(C).
    7. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    8. Syed M. Hussain & Lin Liu, 2024. "Macroeconomic effects of discretionary tax changes in Canada: Evidence from a new narrative measure of tax shocks," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 57(1), pages 78-107, February.
    9. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    10. Mario Alloza & Jesús Gonzalo & Carlos Sanz, 2025. "Dynamic Effects of Persistent Shocks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(4), pages 380-394, June.
    11. Rüth, Sebastian K. & Simon, Camilla, 2020. "How Do Income and the Debt Position of Households Propagate Public into Private Spending?," Working Papers 0676, University of Heidelberg, Department of Economics.
    12. Arefeva, Alina & Arefyev, Nikolay, 2025. "Playing by the Taylor rules or sticking to Friedman’s policy: A new approach to monetary policy identification," Economic Modelling, Elsevier, vol. 143(C).
    13. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    14. ChaeWon Baek & Byoungchan Lee, 2022. "A Guide to Autoregressive Distributed Lag Models for Impulse Response Estimations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1101-1122, October.
    15. Metiu, Norbert, 2021. "Anticipation effects of protectionist U.S. trade policies," Journal of International Economics, Elsevier, vol. 133(C).
    16. Max Breitenlechner & Martin Geiger & Mathias Klein, 2024. "The Fiscal Channel of Monetary Policy," Working Papers 2024-07, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Leonardo Melosi & Francesco Zanetti, 2022. "The Signaling Effects of Fiscal Announcements," Working Paper Series WP 2022-38, Federal Reserve Bank of Chicago.
    18. Masahiro Tanaka, 2025. "Quasi-Bayesian Local Projections: Simultaneous Inference and Extension to the Instrumental Variable Method," Papers 2503.20249, arXiv.org.
    19. Haug, Alfred A. & Sznajderska, Anna, 2024. "Government spending multipliers: Is there a difference between government consumption and investment purchases?," Journal of Macroeconomics, Elsevier, vol. 79(C).
    20. Ho, Paul & Lubik, Thomas A. & Matthes, Christian, 2024. "Averaging impulse responses using prediction pools," Journal of Monetary Economics, Elsevier, vol. 146(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.12422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.