IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/533.html
   My bibliography  Save this paper

Unconditional Quantile Regressions

Author

Listed:
  • SErgio Firpo

    () (Department of Economics PUC-Rio)

  • Nicole M. Fortin

    (University of British Columbia)

  • Thomas Lemieux

    (University of British Columbia)

Abstract

We propose a new regression method to estimate the impact of explanatory variables on quantiles of the unconditional distribution of an outcome variable. The proposed method consists of running a regression of the (recentered) influence function (RIF) of the unconditional quantile on the explanatory variables. The influence function is a widely used tool in robust estimation that can easily be computed for each quantile of interest. We show how standard partial effects, as well as policy effects, can be estimated using our regression approach. We propose three different regression estimators based on a standard OLS regression (RIFOLS), a Logit regression (RIF-Logit), and a nonparametric Logit regression (RIFNP). We also discuss how our approach can be generalized to other distributional statistics besides quantiles.

Suggested Citation

  • SErgio Firpo & Nicole M. Fortin & Thomas Lemieux, 2006. "Unconditional Quantile Regressions," Textos para discussão 533, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:533
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td533.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    2. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Nicole M. Fortin & Thomas Lemieux, 1998. "Rank Regressions, Wage Distributions, and the Gender Gap," Journal of Human Resources, University of Wisconsin Press, vol. 33(3), pages 610-643.
    5. Jean-Pierre Florens & James Heckman & Costas Meghir & Edward Vytlacil, 2002. "Instrumental variables, local instrumental variables and control functions," CeMMAP working papers CWP15/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    7. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. James Albrecht & Anders Bjorklund & Susan Vroman, 2003. "Is There a Glass Ceiling in Sweden?," Journal of Labor Economics, University of Chicago Press, vol. 21(1), pages 145-177, January.
    9. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    10. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    11. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    12. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    13. J. P. Florens & J. J. Heckman & C. Meghir & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models With Continuous, Endogenous Treatment and Heterogeneous Effects," Econometrica, Econometric Society, vol. 76(5), pages 1191-1206, September.
    14. David Card & Thomas Lemieux & W. Craig Riddell, 2004. "Unions and Wage Inequality," Journal of Labor Research, Transaction Publishers, vol. 25(4), pages 519-562, October.
    15. Javier Gardeazabal & Arantza Ugidos, 2005. "Gender wage discrimination at quantiles," Journal of Population Economics, Springer;European Society for Population Economics, vol. 18(1), pages 165-179, July.
    16. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    17. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
    18. Thomas Lemieux, 2008. "The changing nature of wage inequality," Journal of Population Economics, Springer;European Society for Population Economics, vol. 21(1), pages 21-48, January.
    19. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, September.
    20. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    21. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
    22. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    23. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    2. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    3. Sarah Voitchovsky & Bertrand Maitre & Brian Nolan, 2012. "Wage Inequality in Ireland’s “Celtic Tiger” Boom," The Economic and Social Review, Economic and Social Studies, vol. 43(1), pages 99-133.
    4. Pallab Ghosh & Jae Lee, 2016. "Decomposition of Changes in Korean Wage Inequality, 1998–2007," Journal of Labor Research, Springer, vol. 37(1), pages 1-28, March.
    5. Pallab Kumar Ghosh & Jae Yoon Lee, 2016. "Decomposition of Changes in Korean Wage Inequality, 1998–2007," Journal of Labor Research, Springer, vol. 37(1), pages 1-28, March.
    6. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    7. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    8. Wang, Wen & Lien, Donald, 2018. "Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector," China Economic Review, Elsevier, vol. 49(C), pages 96-113.
    9. Juan D. Barón & Deborah A. Cobb‐Clark, 2010. "Occupational Segregation and the Gender Wage Gap in Private‐ and Public‐Sector Employment: A Distributional Analysis," The Economic Record, The Economic Society of Australia, vol. 86(273), pages 227-246, June.
    10. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    11. Joseph G. Altonji & Prashant Bharadwaj & Fabian Lange, 2012. "Changes in the Characteristics of American Youth: Implications for Adult Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 30(4), pages 783-828.
    12. VAN KERM Philippe & YU Seunghee & CHOE Chung, 2014. "Wage differentials between native, immigrant and cross-border workers: Evidence and model comparisons," LISER Working Paper Series 2014-05, LISER.
    13. Torgovitsky, Alexander, 2017. "Minimum distance from independence estimation of nonseparable instrumental variables models," Journal of Econometrics, Elsevier, vol. 199(1), pages 35-48.
    14. Santiago Pereda Fernández, 2016. "Estimation of counterfactual distributions with a continuous endogenous treatment," Temi di discussione (Economic working papers) 1053, Bank of Italy, Economic Research and International Relations Area.
    15. Philippe Van Kerm, 2013. "Generalized measures of wage differentials," Empirical Economics, Springer, vol. 45(1), pages 465-482, August.
    16. Javier Alejo & Maria Florencia Gabrielli & Walter Sosa-Escudero, 2014. "The Distributive Effects of Education: An Unconditional Quantile Regression Approach," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 29(1), pages 53-76, April.
    17. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    18. Chi, Wei & Li, Bo, 2007. "Glass Ceiling or Sticky Floor? Examining the Gender Pay Gap across the Wage Distribution in Urban China, 1987-2004," MPRA Paper 3544, University Library of Munich, Germany.
    19. Zhu, Rong, 2016. "Wage differentials between urban residents and rural migrants in urban China during 2002–2007: A distributional analysis," China Economic Review, Elsevier, vol. 37(C), pages 2-14.
    20. Böheim, René & Himpele, Klemens & Mahringer, Helmut & Zulehner, Christine, 2013. "The distribution of the gender wage gap in Austria : evidence from matched employer-employee data and tax records," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 46(1), pages 19-34.

    More about this item

    Keywords

    Influence Functions; Unconditional Quantile; Quantile Regressions.;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:533. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.