IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Unconditional Quantile Regressions

  • SErgio Firpo

    ()

    (Department of Economics PUC-Rio)

  • Nicole M. Fortin

    (University of British Columbia)

  • Thomas Lemieux

    (University of British Columbia)

We propose a new regression method to estimate the impact of explanatory variables on quantiles of the unconditional distribution of an outcome variable. The proposed method consists of running a regression of the (recentered) influence function (RIF) of the unconditional quantile on the explanatory variables. The influence function is a widely used tool in robust estimation that can easily be computed for each quantile of interest. We show how standard partial effects, as well as policy effects, can be estimated using our regression approach. We propose three different regression estimators based on a standard OLS regression (RIFOLS), a Logit regression (RIF-Logit), and a nonparametric Logit regression (RIFNP). We also discuss how our approach can be generalized to other distributional statistics besides quantiles.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.puc-rio.br/pdf/td533.pdf
Download Restriction: no

Paper provided by Department of Economics PUC-Rio (Brazil) in its series Textos para discussão with number 533.

as
in new window

Length: 54p
Date of creation: Nov 2006
Date of revision:
Handle: RePEc:rio:texdis:533
Contact details of provider: Postal: Rua Marquês de São Vicente, 225, 22453-900 Rio de Janeiro, RJ
Phone: 021 35271078
Fax: 021 35271084
Web page: http://www.econ.puc-rio.br

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James J. Heckman & Edward J. Vytlacil, 2000. "Local Instrumental Variables," NBER Technical Working Papers 0252, National Bureau of Economic Research, Inc.
  2. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-79, July.
  3. Nicole M. Fortin & Thomas Lemieux, 1998. "Rank Regressions, Wage Distributions, and the Gender Gap," Journal of Human Resources, University of Wisconsin Press, vol. 33(3), pages 610-643.
  4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  5. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2008. "Trends in U.S. Wage Inequality: Revising the Revisionists," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 300-323, May.
  6. Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
  7. Andrew Chesher, 2003. "Identification in Nonseparable Models," Econometrica, Econometric Society, vol. 71(5), pages 1405-1441, 09.
  8. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, 05.
  9. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  10. Albrecht, James & Björklund, Anders & Vroman, Susan, 2001. "Is There a Glass Ceiling in Sweden?," IZA Discussion Papers 282, Institute for the Study of Labor (IZA).
  11. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
  12. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
  13. repec:cup:cbooks:9780521845731 is not listed on IDEAS
  14. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-60, September.
  15. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
  16. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-223, September.
  17. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
  18. David Card & Thomas Lemieux & W. Craig Riddell, 2004. "Unions and Wage Inequality," Journal of Labor Research, Transaction Publishers, vol. 25(4), pages 519-562, October.
  19. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, 09.
  20. J.P. Florensy & J. J. Heckmanz & C. Meghirx & E. Vytlacil, 2008. "Identification of Treatment Effects Using Control Functions in Models with Continuous, Endogenous Treatment and Heterogeneous Effects," Working Papers 200832, Geary Institute, University College Dublin.
  21. Thomas Lemieux, 2008. "The changing nature of wage inequality," Journal of Population Economics, Springer, vol. 21(1), pages 21-48, January.
  22. Javier Gardeazabal & Arantza Ugidos, 2005. "Gender wage discrimination at quantiles," Journal of Population Economics, Springer, vol. 18(1), pages 165-179, 07.
  23. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
  24. repec:cup:cbooks:9780521608275 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rio:texdis:533. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.