IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03089878.html

Bayesian MIDAS penalized regressions: Estimation, selection, and prediction

Author

Listed:
  • Matteo Mogliani
  • Anna Simoni

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, CNRS - Centre National de la Recherche Scientifique)

Abstract

We propose a new approach to mixed-frequency regressions in a high-dimensional environment that resorts to Group Lasso penalization and Bayesian techniques for estimation and inference. In particular, to improve the prediction properties of the model and its sparse recovery ability, we consider a Group Lasso with a spike-and-slab prior. Penalty hyper-parameters governing the model shrinkage are automatically tuned via an adaptive MCMC algorithm. We establish good frequentist asymptotic properties of the posterior of the in-sample and out-of-sample prediction error, we recover the optimal posterior contraction rate, and we show optimality of the posterior predictive density. Simulations show that the proposed models have good selection and forecasting performance in small samples, even when the design matrix presents cross-correlation. When applied to forecasting U.S. GDP, our penalized regressions can outperform many strong competitors. Results suggest that financial variables may have some, although very limited, short-term predictive content.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
  • Handle: RePEc:hal:journl:hal-03089878
    DOI: 10.1016/j.jeconom.2020.07.022
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    2. Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
    3. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
    4. Ji, Mingyang & Du, Juntao & Du, Pei & Niu, Tong & Wang, Jianzhou, 2025. "A novel probabilistic carbon price prediction model: Integrating the transformer framework with mixed-frequency modeling at different quartiles," Applied Energy, Elsevier, vol. 391(C).
    5. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    6. Jad Beyhum & Jonas Striaukas, 2023. "Factor-augmented sparse MIDAS regressions with an application to nowcasting," Papers 2306.13362, arXiv.org, revised Oct 2025.
    7. Quinlan Lee, Stephen Snudden, 2025. "Exact Mixed-Frequency Data Sampling (eMIDAS)," LCERPA Working Papers jc0157, Laurier Centre for Economic Research and Policy Analysis, revised Jun 2025.
    8. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    9. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    10. Tibor Szendrei & Arnab Bhattacharjee & Mark E. Schaffer, 2024. "MIDAS-QR with 2-Dimensional Structure," Papers 2406.15157, arXiv.org.
    11. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
    12. Matteo Mogliani & Anna Simoni, 2024. "Bayesian Bi-level Sparse Group Regressions for Macroeconomic Density Forecasting," Papers 2404.02671, arXiv.org, revised Nov 2024.
    13. Jorge M. Uribe & Oscar Valencia, 2024. "Taking the Pulse of Fiscal Distress: Inflation, Depreciation, and Crises," IREA Working Papers 202416, University of Barcelona, Research Institute of Applied Economics, revised Dec 2024.
    14. Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2025. "Panel Machine Learning with Mixed-Frequency Data: Monitoring State-Level Fiscal Variables," Working Papers 25-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised May 2025.
    15. Ignacio Garr'on & Andrey Ramos, 2025. "High-frequency Density Nowcasts of U.S. State-Level Carbon Dioxide Emissions," Papers 2501.03380, arXiv.org.
    16. Alain Hecq & Marie Ternes & Ines Wilms, 2025. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 1946-1968, September.
    17. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    18. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
    19. Mei, Ziwei & Shi, Zhentao, 2024. "On LASSO for high dimensional predictive regression," Journal of Econometrics, Elsevier, vol. 242(2).
    20. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    21. David Kohns & Galina Potjagailo, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
    22. Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Monitoring daily unemployment at risk"," IREA Working Papers 202211, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    23. Xingxuan Zhuo & Shunfei Luo & Yan Cao, 2025. "Exploring Multisource High‐Dimensional Mixed‐Frequency Risks in the Stock Market: A Group Penalized Reverse Unrestricted Mixed Data Sampling Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 459-473, March.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03089878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.