IDEAS home Printed from https://ideas.repec.org/p/bfr/banfra/788.html

Nowcasting World GDP Growth with High-Frequency Data

Author

Listed:
  • Caroline Jardet
  • Baptiste Meunier

Abstract

The Covid-19 crisis has shown how high-frequency data can help tracking economic turning points in real-time. Our paper investigates whether high-frequency data can also improve the nowcasting performances for world GDP growThéon quarterly or annual basis. To this end, we select a large dataset of 151 monthly and 39 weekly series for 17 advanced and emerging countries representing 68% of world GDP. Our approach builds on a Factor-Augmented MIxed DAta Sampling (FA-MIDAS) which allows us to take advantage of our large database and to combine different frequencies. Models that include weekly data significantly outperforms other models relying on monthly or quarterly indicators, both in- and out-of-sample. Breaking down our sample, we show that models with weekly data have similar nowcasting performances relative to other models during normal times but strongly outperform them during crisis episodes (2008-2009 and 2020). We finally construct a nowcasting model of annual world GDP growth incorporating weekly data which give timely (one every week) and accurate forecasts (close to IMF and OECD projections, but with a 1 to 3 months lead). Policy-wise, this model can provide an alternative benchmark projection for world GDP growth during crisis episodes when sudden swings in the economy make the usual benchmark projections (from the IMF or the OECD) rapidly outdated.

Suggested Citation

  • Caroline Jardet & Baptiste Meunier, 2020. "Nowcasting World GDP Growth with High-Frequency Data," Working papers 788, Banque de France.
  • Handle: RePEc:bfr:banfra:788
    as

    Download full text from publisher

    File URL: https://publications.banque-france.fr/sites/default/files/medias/documents/wp788.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    2. Jiawen Luo & Jingyi Deng & Juncal Cunado & Rangan Gupta, 2025. "Forecasting GDP with Oil Price Shocks: A Mixed-Frequency Time-Varying Perspective," Working Papers 202523, University of Pretoria, Department of Economics.
    3. Cheng Wang & Mengnan Xu & Zheng Wang & Wenjing Sun, 2024. "Research on China insurance demand forecasting: Based on mixed frequency data model," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
    4. d'Aspremont, Alexandre & Ben Arous, Simon & Bricongne, Jean-Charles & Lietti, Benjamin & Meunier, Baptiste, 2025. "Satellites turn “concrete”: Tracking cement with satellite data and neural networks," Journal of Econometrics, Elsevier, vol. 249(PC).
    5. Luke Hartigan & Tom Rosewall, 2025. "Nowcasting Quarterly GDP Growth During the COVID‐19 Crisis Using a Monthly Activity Indicator," The Economic Record, The Economic Society of Australia, vol. 101(335), pages 456-484, December.
    6. Bricongne, Jean-Charles & Meunier, Baptiste & Pouget, Sylvain, 2023. "Web-scraping housing prices in real-time: The Covid-19 crisis in the UK," Journal of Housing Economics, Elsevier, vol. 59(PB).
    7. Dennis Kant & Andreas Pick & Jasper de Winter, 2025. "Nowcasting GDP using machine learning methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.
    8. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    9. Michael Anthonisz, 2023. "Nowcasting Key Australian Macroeconomic Variables," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 56(3), pages 371-380, September.
    10. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    11. Pradeep Mishra & Khder Alakkari & Mostafa Abotaleb & Pankaj Kumar Singh & Shilpi Singh & Monika Ray & Soumitra Sankar Das & Umme Habibah Rahman & Ali J. Othman & Nazirya Alexandrovna Ibragimova & Gulf, 2021. "Nowcasting India Economic Growth Using a Mixed-Data Sampling (MIDAS) Model (Empirical Study with Economic Policy Uncertainty–Consumer Prices Index)," Data, MDPI, vol. 6(11), pages 1-15, November.
    12. Satoshi Urasawa, 2023. "The Usefulness of High-Frequency Alternative Data to Obtain Nowcasts for Japan’s GDP: Evidence from Credit Card Data," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 191-211, September.
    13. Dalia Atif, 2025. "Enhancing Long-Term GDP Forecasting with Advanced Hybrid Models: A Comparative Study of ARIMA-LSTM and ARIMA-TCN with Dense Regression," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3447-3473, June.
    14. Chatelais, Nicolas & Stalla-Bourdillon, Arthur & Chinn, Menzie D., 2023. "Forecasting real activity using cross-sectoral stock market information," Journal of International Money and Finance, Elsevier, vol. 131(C).
    15. Robert Lehmann & Sascha Möhrle, 2024. "Forecasting regional industrial production with novel high‐frequency electricity consumption data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1918-1935, September.
    16. A. Vamsikrishna & E. V. Gijo, 2024. "New Techniques to Perform Cross-Validation for Time Series Models," SN Operations Research Forum, Springer, vol. 5(2), pages 1-12, June.
    17. Natalia Makeeva, 2025. "The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 27-49.
    18. Takashi Nakazawa, 2022. "Constructing GDP Nowcasting Models Using Alternative Data," Bank of Japan Working Paper Series 22-E-9, Bank of Japan.
    19. Ivan Stankevich, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
    20. Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
    21. Ivan Stankevich, 2025. "Nowcasting and short-term forecasting of G-20 countries GDP with endogenous regime-switching MIDAS models," Empirical Economics, Springer, vol. 69(3), pages 1383-1410, September.
    22. Nicolas Chatelais & Arthur Stalla-Bourdillon & Menzie D. Chinn, 2022. "Macroeconomic Forecasting using Filtered Signals from a Stock Market Cross Section," NBER Working Papers 30305, National Bureau of Economic Research, Inc.
    23. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:banfra:788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.