IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/021520.html
   My bibliography  Save this article

The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models

Author

Listed:
  • Natalia Makeeva

    (HSE University, Moscow, Russian Federation)

Abstract

The paper presents the results of an accuracy analysis of nowcasting models for Russia’s GDP and its components based on usage data for the period from the first quarter of 2014 to the third quarter of 2023. The novelty of the study lies in comparing the accuracy of various models — MIDAS, MFBVAR, DFM models, regularization models, and classical autoregression for order 1, evaluated on both the first and final versions of official statistics revisions, taking into account data availability within the examined quarter. The result of our study is a strategy for optimal selection of data and models for the most accurate first and final versions of nowcasting official statistics revisions for GDP and its components by use. Our paper also demonstrates that the nowcasting model for Russia’s GDP, evaluated on the first revision, is more accurate regardless of data completeness within the quarter, despite multiple subsequent revisions of initial data by Rosstat. Furthermore, for GDP models, the forecasts of the first, most volatile, and imprecise revision turn out to be the most accurate.

Suggested Citation

  • Natalia Makeeva, 2025. "The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 27-49.
  • Handle: RePEc:ris:apltrx:021520
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    4. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    5. Ekaterina Astafieva & Marina Turuntseva, 2021. "Revisions of GDP: Data and Assessment of Statistical Properties," HSE Economic Journal, National Research University Higher School of Economics, vol. 25(1), pages 65-101.
    6. N. M. Makeeva & I. P. Stankevich & N. S. Lyubaykin, 2024. "Nowcasting the Russian economy macroeconomic indicators under uncertainty: Does taking into account the news sentiment help?," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 3.
    7. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    8. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    9. Evžen Kočenda & Karen Poghosyan, 2020. "Nowcasting Real GDP Growth: Comparison between Old and New EU Countries," Eastern European Economics, Taylor & Francis Journals, vol. 58(3), pages 197-220, May.
    10. Dahlhaus, Tatjana & Guénette, Justin-Damien & Vasishtha, Garima, 2017. "Nowcasting BRIC+M in real time," International Journal of Forecasting, Elsevier, vol. 33(4), pages 915-935.
    11. Carriero, Andrea & Clements, Michael P. & Galvão, Ana Beatriz, 2015. "Forecasting with Bayesian multivariate vintage-based VARs," International Journal of Forecasting, Elsevier, vol. 31(3), pages 757-768.
    12. repec:taf:jnlbes:v:30:y:2012:i:2:p:181-190 is not listed on IDEAS
    13. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    14. Berger, Tino & Morley, James & Wong, Benjamin, 2023. "Nowcasting the output gap," Journal of Econometrics, Elsevier, vol. 232(1), pages 18-34.
      • Tino Berger & James Morley & Benjamin Wong, 2020. "Nowcasting the Output Gap," CAMA Working Papers 2020-78, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    16. Jacobs, Jan P.A.M. & van Norden, Simon, 2011. "Modeling data revisions: Measurement error and dynamics of "true" values," Journal of Econometrics, Elsevier, vol. 161(2), pages 101-109, April.
    17. Robert Lehmann, 2024. "A real-time regional accounts database for Germany with applications to GDP revisions and nowcasting," Empirical Economics, Springer, vol. 67(2), pages 817-838, August.
    18. Ana Beatriz Galvão & James Mitchell, 2019. "Measuring Data Uncertainty: An Application using the Bank of England's "Fan Charts" for Historical GDP Growth," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-08, Economic Statistics Centre of Excellence (ESCoE).
    19. Strohsal, Till & Wolf, Elias, 2020. "Data revisions to German national accounts: Are initial releases good nowcasts?," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1252-1259.
    20. Natalya Makeeva & Ivan Stankevich, 2022. "Nowcasting of the Components of Russian GDP," HSE Economic Journal, National Research University Higher School of Economics, vol. 26(4), pages 598-622.
    21. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    22. repec:hal:journl:peer-00844811 is not listed on IDEAS
    23. Ivan Stankevich, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
    24. M. Y. Gareev & A. V. Polbin, 2022. "Nowcasting Russia’s key macroeconomic variables using machine learning," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    25. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    26. Zubarev Andrey & Rybak Konstantin, 2021. "GDP Nowcasting: Dynamic Factor Model vs. Official Forecasts [Наукастинг Ввп: Динамическая Факторная Модель И Официальные Прогнозы]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 34-40, December.
    27. Ivan Stankevich, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    28. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander Eliseev, 2025. "Nowcasting Russian GDP in a Mixed-Frequency DSGE Model with a Panel of Non-Modelled Variables," Russian Journal of Money and Finance, Bank of Russia, vol. 84(3), pages 63-93, September.
    2. Ivan Stankevich, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
    3. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
    4. Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," Working Papers 2024-15, University of Sydney, School of Economics.
    5. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    6. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    7. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    8. Andrey Polbin & Andrei Shumilov, 2025. "Nowcasting and forecasting Russian GDP and its components using quantile models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 5-26.
    9. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    10. Nikoleta Anesti & Ana Beatriz Galvao & Silvia Miranda-Agrippino, 2018. "Uncertain Kingdom: Nowcasting GDP and its Revisions," Discussion Papers 1824, Centre for Macroeconomics (CFM).
    11. Götz, Thomas B. & Hecq, Alain & Urbain, Jean-Pierre, 2016. "Combining forecasts from successive data vintages: An application to U.S. growth," International Journal of Forecasting, Elsevier, vol. 32(1), pages 61-74.
    12. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    13. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    15. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    16. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    17. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    18. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    19. Deicy J. Cristiano & Manuel D. Hernández & José David Pulido, 2012. "Pronósticos de corto plazo en tiempo real para la actividad económica colombiana," Borradores de Economia 724, Banco de la Republica de Colombia.
    20. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:021520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.