IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/021520.html
   My bibliography  Save this article

The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models

Author

Listed:
  • Natalia Makeeva

    (HSE University, Moscow, Russian Federation)

Abstract

The paper presents the results of an accuracy analysis of nowcasting models for Russia’s GDP and its components based on usage data for the period from the first quarter of 2014 to the third quarter of 2023. The novelty of the study lies in comparing the accuracy of various models — MIDAS, MFBVAR, DFM models, regularization models, and classical autoregression for order 1, evaluated on both the first and final versions of official statistics revisions, taking into account data availability within the examined quarter. The result of our study is a strategy for optimal selection of data and models for the most accurate first and final versions of nowcasting official statistics revisions for GDP and its components by use. Our paper also demonstrates that the nowcasting model for Russia’s GDP, evaluated on the first revision, is more accurate regardless of data completeness within the quarter, despite multiple subsequent revisions of initial data by Rosstat. Furthermore, for GDP models, the forecasts of the first, most volatile, and imprecise revision turn out to be the most accurate.

Suggested Citation

  • Natalia Makeeva, 2025. "The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 27-49.
  • Handle: RePEc:ris:apltrx:021520
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:021520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.