IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0474.html
   My bibliography  Save this article

Application of Markov-Switching MIDAS models to nowcasting of GDP and its components

Author

Listed:
  • Stankevich, Ivan

    (HSE University, Moscow, Russian Federation)

Abstract

The paper investigates the application of Markov-Switching MIDAS (Mixed Data Sampling) models to nowcasting of Russian GDP and its components. Different methods to get the resulting nowcast based on nowcasts under different regimes are proposed: weighted by regime probabilities, most probable regime, and perfectly predicted regime nowcasts. The model obtained is compared with standard econometric nowcasting models. Among all the models tested, Markov-Switching MIDAS model with perfectly predicted regime yields the best results for most of the series analyzed. MS MIDAS models without perfect regime foresight also perform better than standard MIDAS models and MFBVAR models for most of the series analyzed.

Suggested Citation

  • Stankevich, Ivan, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
  • Handle: RePEc:ris:apltrx:0474
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2023_70_122-143.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William A. Barnett & Biyan Tang, 2016. "Chinese Divisia Monetary Index and GDP Nowcasting," Open Economies Review, Springer, vol. 27(5), pages 825-849, November.
    2. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
    3. Daniel Hopp, 2022. "Benchmarking Econometric and Machine Learning Methodologies in Nowcasting," Papers 2205.03318, arXiv.org.
    4. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    5. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    6. Natalya Makeeva & Ivan Stankevich, 2022. "Nowcasting of the Components of Russian GDP," HSE Economic Journal, National Research University Higher School of Economics, vol. 26(4), pages 598-622.
    7. Proietti, Tommaso & Giovannelli, Alessandro & Ricchi, Ottavio & Citton, Ambra & Tegami, Christían & Tinti, Cristina, 2021. "Nowcasting GDP and its components in a data-rich environment: The merits of the indirect approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1376-1398.
    8. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    9. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
    10. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    11. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    12. Porshakov, A. & Ponomarenko, A. & Sinyakov, A., 2016. "Nowcasting and Short-Term Forecasting of Russian GDP with a Dynamic Factor Model," Journal of the New Economic Association, New Economic Association, vol. 30(2), pages 60-76.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. M. Y. Gareev & A. V. Polbin, 2022. "Nowcasting Russia’s key macroeconomic variables using machine learning," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    15. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    16. Zubarev Andrey & Rybak Konstantin, 2021. "GDP Nowcasting: Dynamic Factor Model vs. Official Forecasts [Наукастинг Ввп: Динамическая Факторная Модель И Официальные Прогнозы]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 34-40, December.
    17. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    20. Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    21. Ksenia Yakovleva, 2018. "Text Mining-based Economic Activity Estimation," Russian Journal of Money and Finance, Bank of Russia, vol. 77(4), pages 26-41, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stankevich, Ivan, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    2. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
    3. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    4. Andrey Zubarev & Daniil Lomonosov & Konstantin Rybak, 2022. "Estimation of the Impact of Global Shocks on the Russian Economy and GDP Nowcasting Using a Factor Model," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 49-78, June.
    5. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    6. Donato Ceci & Orest Prifti & Andrea Silvestrini, 2024. "Nowcasting Italian GDP growth: a Factor MIDAS approach," Temi di discussione (Economic working papers) 1446, Bank of Italy, Economic Research and International Relations Area.
    7. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    8. Fokin, Nikita, 2021. "The importance of modeling structural breaks in forecasting Russian GDP," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 5-29.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    10. Glocker, Christian & Kaniovski, Serguei, 2020. "Structural modeling and forecasting using a cluster of dynamic factor models," MPRA Paper 101874, University Library of Munich, Germany.
    11. El-Shagi, Makram & Tochkov, Kiril, 2022. "Divisia monetary aggregates for Russia: Money demand, GDP nowcasting and the price puzzle," Economic Systems, Elsevier, vol. 46(4).
    12. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    13. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
    14. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    15. Caruso, Alberto, 2018. "Nowcasting with the help of foreign indicators: The case of Mexico," Economic Modelling, Elsevier, vol. 69(C), pages 160-168.
    16. Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
    17. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Christian Glocker & Philipp Wegmueller, 2020. "Business cycle dating and forecasting with real-time Swiss GDP data," Empirical Economics, Springer, vol. 58(1), pages 73-105, January.
    19. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
    20. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.

    More about this item

    Keywords

    nowcasting; Russian GDP; forecasting; Markov-Switching models; MIDAS models.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.