IDEAS home Printed from https://ideas.repec.org/a/bkr/journl/v84y2025i3p63-93.html

Nowcasting Russian GDP in a Mixed-Frequency DSGE Model with a Panel of Non-Modelled Variables

Author

Listed:
  • Alexander Eliseev

    (Bank of Russia)

Abstract

The study focuses on improving the accuracy of nowcasting Russian gross domestic product (GDP) growth rates using dynamic stochastic general equilibrium (DSGE) models. I modify one of the DSGE models of the Russian economy to incorporate mixed-frequency data by introducing an equation that links a panel of non-modelled high-frequency indicators of the current state of the economy to observable variables, whose dynamics are determined directly by the model. The results of the out-of-sample pseudo-real-time forecasting demonstrate that the incorporation of these additional variables enhances the accuracy of Russian GDP nowcasting using the DSGE model and makes the nowcast from this model comparable with forecasts from competing non-structural models and outperforms benchmark models in accuracy. The study also investigates the extent to which fluctuations in high-frequency indicators are associated with macroeconomic factors, as well as the economic shocks driving the explained portion of these fluctuations. I note that the structural interpretation of non-modelled variables is a potential strength of the model, though caution is warranted due to the econometric methodology employed.

Suggested Citation

  • Alexander Eliseev, 2025. "Nowcasting Russian GDP in a Mixed-Frequency DSGE Model with a Panel of Non-Modelled Variables," Russian Journal of Money and Finance, Bank of Russia, vol. 84(3), pages 63-93, September.
  • Handle: RePEc:bkr:journl:v:84:y:2025:i:3:p:63-93
    as

    Download full text from publisher

    File URL: https://rjmf.econs.online/upload/documents/RJMF-84-3-Nowcasting-Russian-GDP.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
    5. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    6. Camacho, Maximo & Lopez-Buenache, German, 2023. "Factor models for large and incomplete data sets with unknown group structure," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1205-1220.
    7. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    8. Reichlin, Lucrezia & Sala, Luca & Giannone, Domenico, 2002. "Tracking Greenspan: Systematic and Unsystematic Monetary Policy Revisited," CEPR Discussion Papers 3550, C.E.P.R. Discussion Papers.
    9. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    10. Martin D. D. Evans, 2005. "Where Are We Now? Real-Time Estimates of the Macroeconomy," International Journal of Central Banking, International Journal of Central Banking, vol. 1(2), September.
    11. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    12. Zubarev Andrey & Rybak Konstantin, 2021. "GDP Nowcasting: Dynamic Factor Model vs. Official Forecasts [Наукастинг Ввп: Динамическая Факторная Модель И Официальные Прогнозы]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 34-40, December.
    13. Luis C. Nunes, 2005. "Nowcasting quarterly GDP growth in a monthly coincident indicator model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(8), pages 575-592.
    14. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    15. Polbin, Andrey V. (Полбин, Андрей В.), 2020. "Estimating Time-Varying Long-Run Growth Rate of Russian GDP in the ARX Model with Oil Prices [Оценка Траектории Темпов Трендового Роста Ввп России В Arx-Модели С Ценами На Нефть]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 40-63, February.
    16. Dmitry Kreptsev & Sergei Seleznev, 2017. "DSGE Model of the Russian Economy with the Banking Sector," Bank of Russia Working Paper Series wps27, Bank of Russia.
    17. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    18. N. M. Makeeva & I. P. Stankevich & N. S. Lyubaykin, 2024. "Nowcasting the Russian economy macroeconomic indicators under uncertainty: Does taking into account the news sentiment help?," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 3.
    19. Michael P. Clements & Ana Beatriz Galvao, 2009. "Forecasting US output growth using leading indicators: an appraisal using MIDAS models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1187-1206.
    20. Andreini, Paolo & Hasenzagl, Thomas & Reichlin, Lucrezia & Senftleben-König, Charlotte & Strohsal, Till, 2023. "Nowcasting German GDP: Foreign factors, financial markets, and model averaging," International Journal of Forecasting, Elsevier, vol. 39(1), pages 298-313.
    21. Andrey Zubarev & Daniil Lomonosov & Konstantin Rybak, 2022. "Estimation of the Impact of Global Shocks on the Russian Economy and GDP Nowcasting Using a Factor Model," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 49-78, June.
    22. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    23. Anastasia Mogilat & Oleg Kryzhanovskiy & Zhanna Shuvalova & Yaroslav Murashov, 2024. "DYFARUS: Dynamic Factor Model to Forecast GDP by Output Using Input-Output Tables," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 3-25, June.
    24. repec:hal:journl:peer-00844811 is not listed on IDEAS
    25. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
    26. Margarita Lyakhnova & Yuri Kolenko, 2024. "Nowcasting the Output Gap in Russia Using Enterprise Monitoring Data," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 26-53, June.
    27. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Mihoubi, Ferhat & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2022. "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP, revised Mar 2023.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," PSE Working Papers hal-04219920, HAL.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," Working Papers hal-04219920, HAL.
    28. Ruey Yau & C. James Hueng, 2019. "Nowcasting GDP Growth for Small Open Economies with a Mixed-Frequency Structural Model," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 177-198, June.
    29. Claudia Foroni & Massimiliano Marcellino, 2014. "Mixed‐Frequency Structural Models: Identification, Estimation, And Policy Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1118-1144, November.
    30. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    31. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    32. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    33. Dahlhaus, Tatjana & Guénette, Justin-Damien & Vasishtha, Garima, 2017. "Nowcasting BRIC+M in real time," International Journal of Forecasting, Elsevier, vol. 33(4), pages 915-935.
    34. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    35. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    36. Konstantin S. Rybak, 2023. "Evaluating the Role of Global Factors in GDP Nowcasting [Анализ Важности Глобальных Факторов Для Наукастинга Ввп]," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 18-23, December.
    37. Ivan Stankevich, 2020. "Comparison of macroeconomic indicators nowcasting methods: Russian GDP case," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 113-127.
    38. Itkonen, Juha & Juvonen, Petteri, 2017. "Nowcasting the Finnish economy with a large Bayesian vector autoregressive model," BoF Economics Review 6/2017, Bank of Finland.
    39. Dmitry Gornostaev & Alexey Ponomarenko & Sergei Seleznev & Alexandra Sterkhova, 2022. "A Real-Time Historical Database of Macroeconomic Indicators for Russia," Russian Journal of Money and Finance, Bank of Russia, vol. 81(1), pages 88-103, March.
    40. Maria S. Lymar & Alexander A. Reentovich & Andrey A. Sinyakov, 2024. "A commodity exporting economy under financial and trade restrictions: Aggregate and structural changes," Russian Journal of Economics, ARPHA Platform, vol. 10(2), pages 103-129, July.
    41. Ivan Stankevich, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
    42. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    43. D. A. Lomonosov & A. V. Polbin & N. D. Fokin, 2020. "Demand, supply, monetary policy, and oil price shocks in the Russian economy (Analysis based on the BVAR model with sign restrictions)," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 10.
    44. Alina Stundziene & Vaida Pilinkiene & Jurgita Bruneckiene & Andrius Grybauskas & Mantas Lukauskas & Irena Pekarskiene, 2024. "Future directions in nowcasting economic activity: A systematic literature review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(4), pages 1199-1233, September.
    45. M. Y. Gareev & A. V. Polbin, 2022. "Nowcasting Russia’s key macroeconomic variables using machine learning," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    46. Červená, Marianna & Schneider, Martin, 2014. "Short-term forecasting of GDP with a DSGE model augmented by monthly indicators," International Journal of Forecasting, Elsevier, vol. 30(3), pages 498-516.
    47. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    48. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    49. Barış Soybilgen & Ege Yazgan, 2021. "Nowcasting US GDP Using Tree-Based Ensemble Models and Dynamic Factors," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 387-417, January.
    50. Porshakov, A. & Ponomarenko, A. & Sinyakov, A., 2016. "Nowcasting and Short-Term Forecasting of Russian GDP with a Dynamic Factor Model," Journal of the New Economic Association, New Economic Association, vol. 30(2), pages 60-76.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Cascaldi-Garcia & Matteo Luciani & Michele Modugno, 2024. "Lessons from nowcasting GDP across the world," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 8, pages 187-217, Edward Elgar Publishing.
    2. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    3. Ivan Stankevich, 2023. "Application of Markov-Switching MIDAS models to nowcasting of GDP and its components," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 70, pages 122-143.
    4. Luke Hartigan & Tom Rosewall, 2025. "Nowcasting Quarterly GDP Growth During the COVID‐19 Crisis Using a Monthly Activity Indicator," The Economic Record, The Economic Society of Australia, vol. 101(335), pages 456-484, December.
    5. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    6. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    7. Natalia Makeeva, 2025. "The impact of the official statistics revision on the accuracy of the Russian macroeconomic indicators nowcasting models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 79, pages 27-49.
    8. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    9. Anastasia Mogilat & Oleg Kryzhanovskiy & Zhanna Shuvalova & Yaroslav Murashov, 2024. "DYFARUS: Dynamic Factor Model to Forecast GDP by Output Using Input-Output Tables," Russian Journal of Money and Finance, Bank of Russia, vol. 83(2), pages 3-25, June.
    10. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    11. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
    12. Andrey Zubarev & Daniil Lomonosov & Konstantin Rybak, 2022. "Estimation of the Impact of Global Shocks on the Russian Economy and GDP Nowcasting Using a Factor Model," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 49-78, June.
    13. Stavros Degiannakis, 2023. "The D-model for GDP nowcasting," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-33, December.
    14. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    15. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    16. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    17. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    18. Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019. "Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland," International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
    19. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    20. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bkr:journl:v:84:y:2025:i:3:p:63-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Kuvshinova (email available below). General contact details of provider: https://edirc.repec.org/data/cbrgvru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.