Exploiting the monthly data-flow in structural forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Giannone, Domenico & Monti, Francesca & Reichlin, Lucrezia, 2016. "Exploiting the monthly data flow in structural forecasting," Journal of Monetary Economics, Elsevier, vol. 84(C), pages 201-215.
- Domenico Giannone & Francesca Monti & Lucrezia Reichlin, 2015. "Exploiting the monthly data flow in structural forecasting," Staff Reports 751, Federal Reserve Bank of New York.
- Domenico Giannone & Francesca Monti & Lucrezia Reichlin, 2014. "Exploiting the monthly data flow in structural forecasting," Bank of England working papers 509, Bank of England.
- Domenico Giannone & Francesca Monti & Lucrezia Reichlin, 2014. "Exploiting the monthly data-flow in structural forecasting," Discussion Papers 1416, Centre for Macroeconomics (CFM).
Citations
Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Hey, Economist! How Do You Forecast the Present?
by Blog Author in Liberty Street Economics on 2017-06-16 20:15:00 - Exploiting the monthly data flow in structural forecasting
by Christian Zimmermann in NEP-DGE blog on 2014-10-05 22:06:38
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
- Kohns, David & Bhattacharjee, Arnab, 2023.
"Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1384-1412.
- David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- David Kohns & Arnab Bhattacharjee, 2019. "Interpreting Big Data in the Macro Economy: A Bayesian Mixed Frequency Estimator," CEERP Working Paper Series 010, Centre for Energy Economics Research and Policy, Heriot-Watt University.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2022.
"Nowcasting with large Bayesian vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 231(2), pages 500-519.
- Cimadomo, Jacopo & Giannone, Domenico & Lenza, Michele & Monti, Francesca & Sokol, Andrej, 2020. "Nowcasting with large Bayesian vector autoregressions," Working Paper Series 2453, European Central Bank.
- Lenza, Michele & Cimadomo, Jacopo & Giannone, Domenico & Monti, Francesca & Sokol, Andrej, 2021. "Nowcasting with Large Bayesian Vector Autoregressions," CEPR Discussion Papers 15854, C.E.P.R. Discussion Papers.
- Meyer-Gohde, Alexander & Shabalina, Ekaterina, 2022. "Estimation and forecasting using mixed-frequency DSGE models," IMFS Working Paper Series 175, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Bjarni G. Einarsson, 2024. "Online Monitoring of Policy Optimality," Economics wp95, Department of Economics, Central bank of Iceland.
- Fabian Krüger & Todd E. Clark & Francesco Ravazzolo, 2017.
"Using Entropic Tilting to Combine BVAR Forecasts With External Nowcasts,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 470-485, July.
- Fabian Kr ger & Todd E. Clark & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers No 8/2015, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Krüger, Fabian & Clark, Todd E. & Ravazzolo, Francesco, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113077, Verein für Socialpolitik / German Economic Association.
- Todd E. Clark & Fabian Krueger & Francesco Ravazzolo, 2015. "Using Entropic Tilting to Combine BVAR Forecasts with External Nowcasts," Working Papers (Old Series) 1439, Federal Reserve Bank of Cleveland.
- Boriss Siliverstovs, 2020.
"Assessing nowcast accuracy of US GDP growth in real time: the role of booms and busts,"
Empirical Economics, Springer, vol. 58(1), pages 7-27, January.
- Boriss Siliverstovs, 2019. "Assessing Nowcast Accuracy of US GDP Growth in Real Time: The Role of Booms and Busts," Working Papers 2019/01, Latvijas Banka.
- Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
- Norberto Rodríguez-Niño & Alejandra Ramírez-Ramírez, 2018. "Metodologías semi-estructurales para estimar la Inflación básica mensual en Colombia," Borradores de Economia 1040, Banco de la Republica de Colombia.
- Alexander Eliseev, 2025. "Nowcasting Russian GDP in a Mixed-Frequency DSGE Model with a Panel of Non-Modelled Variables," Russian Journal of Money and Finance, Bank of Russia, vol. 84(3), pages 63-93, September.
- Hilde C. Bjornland & Jamie L. Cross & Felix Kapfhammer, 2023.
"The Drivers of Emission Reductions in the European Carbon Market,"
CAMA Working Papers
2023-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hilde C. Bjørnland & Jamie L. Cross & Felix Kapfhammer, 2023. "The Drivers of Emission Reductions in the European Carbon Market," Working Papers No 08/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023.
"A Bayesian DSGE Approach to Modelling Cryptocurrency","
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 1012-1035, December.
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "A Bayesian DSGE Approach to Modelling Cryptocurrency," Working Papers No 09/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Stylianos Asimakopoulos & Marco Lorusso & Francesco Ravazzolo, 2023. "Code and data files for "A Bayesian DSGE Approach to Modelling Cryptocurrency"," Computer Codes 21-87, Review of Economic Dynamics.
- Christensen, Bent Jesper & Posch, Olaf & van der Wel, Michel, 2016.
"Estimating dynamic equilibrium models using mixed frequency macro and financial data,"
Journal of Econometrics, Elsevier, vol. 194(1), pages 116-137.
- Bent Jesper Christensen & Olaf Posch & Michel van der Wel, 2014. "Estimating Dynamic Equilibrium Models Using Mixed Frequency Macro and Financial Data," CESifo Working Paper Series 5030, CESifo.
- Agostino Consolo & Claudia Foroni & Catalina Martínez Hernández, 2023. "A Mixed Frequency BVAR for the Euro Area Labour Market," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 1048-1082, October.
More about this item
Keywords
; ; ; ; ;JEL classification:
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:57998. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/ehl/lserod/57998.html