IDEAS home Printed from https://ideas.repec.org/p/cpm/dynare/072.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Dynare: Reference Manual Version 5

Author

Listed:
  • Adjemian, Stéphane
  • Bastani, Houtan
  • Juillard, Michel
  • Karamé, Fréderic
  • Mihoubi, Ferhat
  • Mutschler, Willi
  • Pfeifer, Johannes
  • Ratto, Marco
  • Rion, Normann
  • Villemot, Sébastien

Abstract

Dynare is a software platform for handling a wide class of economic models, in particular dynamic stochastic general equilibrium (DSGE) and overlapping generations (OLG) models. The models solved by Dynare include those relying on the rational expectations hypothesis, wherein agents form their expectations about the future in a way consistent with the model. But Dynare is also able to handle models where expectations are formed differently: on one extreme, models where agents perfectly anticipate the future; on the other extreme, models where agents have limited rationality or imperfect knowledge of the state of the economy and, hence, form their expectations through a learning process. Dynare offers a user-friendly and intuitive way of describing these models. It is able to perform simulations of the model given a calibration of the model parameters and is also able to estimate these parameters given a dataset. Dynare is a free software, which means that it can be downloaded free of charge, that its source code is freely available, and that it can be used for both non-profit and for-profit purposes.

Suggested Citation

  • Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Mihoubi, Ferhat & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2022. "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP, revised Mar 2023.
  • Handle: RePEc:cpm:dynare:072
    as

    Download full text from publisher

    File URL: https://www.dynare.org/wp-repo/dynarewp072.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," PSE Working Papers hal-04219920, HAL.
    • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," Working Papers hal-04219920, HAL.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Kim, Jinill & Kim, Sunghyun Henry, 2003. "Spurious welfare reversals in international business cycle models," Journal of International Economics, Elsevier, vol. 60(2), pages 471-500, August.
    3. Ivana Komunjer & Serena Ng, 2011. "Dynamic Identification of Dynamic Stochastic General Equilibrium Models," Econometrica, Econometric Society, vol. 79(6), pages 1995-2032, November.
    4. Frank Schorfheide, 2000. "Loss function-based evaluation of DSGE models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 645-670.
    5. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    6. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    7. Amisano, Gianni & Tristani, Oreste, 2010. "Euro area inflation persistence in an estimated nonlinear DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1837-1858, October.
    8. Guerrieri, Luca & Iacoviello, Matteo, 2015. "OccBin: A toolkit for solving dynamic models with occasionally binding constraints easily," Journal of Monetary Economics, Elsevier, vol. 70(C), pages 22-38.
    9. Mark Aguiar & Gita Gopinath, 2007. "Emerging Market Business Cycles: The Cycle Is the Trend," Journal of Political Economy, University of Chicago Press, vol. 115(1), pages 69-102.
    10. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    11. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    12. Juillard, Michel, 1996. "Dynare : a program for the resolution and simulation of dynamic models with forward variables through the use of a relaxation algorithm," CEPREMAP Working Papers (Couverture Orange) 9602, CEPREMAP.
    13. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    14. Pablo Cuba‐Borda & Luca Guerrieri & Matteo Iacoviello & Molin Zhong, 2019. "Likelihood evaluation of models with occasionally binding constraints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1073-1085, November.
    15. S. J. Koopman & J. Durbin, 2000. "Fast Filtering and Smoothing for Multivariate State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(3), pages 281-296, May.
    16. Born, Benjamin & Pfeifer, Johannes, 2014. "Policy risk and the business cycle," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 68-85.
    17. M. Sköld & G. O. Roberts, 2003. "Density Estimation for the Metropolis–Hastings Algorithm," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(4), pages 699-718, December.
    18. Martin M Andreasen & Jesús Fernández-Villaverde & Juan F Rubio-Ramírez, 2018. "The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 1-49.
    19. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    20. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    21. S. J. Koopman & J. Durbin, 2003. "Filtering and smoothing of state vector for diffuse state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 85-98, January.
    22. Pearlman, Joseph & Currie, David & Levine, Paul, 1986. "Rational expectations models with partial information," Economic Modelling, Elsevier, vol. 3(2), pages 90-105, April.
    23. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    24. Ruge-Murcia, Francisco, 2012. "Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 36(6), pages 914-938.
    25. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    26. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    27. Zhongjun Qu & Denis Tkachenko, 2012. "Identification and frequency domain quasi‐maximum likelihood estimation of linearized dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 3(1), pages 95-132, March.
    28. Dennis, Richard, 2007. "Optimal Policy In Rational Expectations Models: New Solution Algorithms," Macroeconomic Dynamics, Cambridge University Press, vol. 11(1), pages 31-55, February.
    29. Boucekkine, Raouf, 1995. "An alternative methodology for solving nonlinear forward-looking models," Journal of Economic Dynamics and Control, Elsevier, vol. 19(4), pages 711-734, May.
    30. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    31. Edward Herbst, 2015. "Using the “Chandrasekhar Recursions” for Likelihood Evaluation of DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 693-705, April.
    32. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    33. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    34. Christiano, Lawrence J. & Trabandt, Mathias & Walentin, Karl, 2011. "Introducing financial frictions and unemployment into a small open economy model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(12), pages 1999-2041.
    35. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    36. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    37. Backus, David K & Kehoe, Patrick J & Kydland, Finn E, 1992. "International Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 100(4), pages 745-775, August.
    38. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    39. Chib, Siddhartha & Ramamurthy, Srikanth, 2010. "Tailored randomized block MCMC methods with application to DSGE models," Journal of Econometrics, Elsevier, vol. 155(1), pages 19-38, March.
    40. Andrle, Michal & Plašil, Miroslav, 2018. "Econometrics with system priors," Economics Letters, Elsevier, vol. 172(C), pages 134-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaygysyz Guljanov & Willi Mutschler & Mark Trede, 2022. "Pruned Skewed Kalman Filter and Smoother: With Application to the Yield Curve," CQE Working Papers 10122, Center for Quantitative Economics (CQE), University of Muenster.
    2. Gantert, Konstantin, 2022. "The Impact of Active Aggregate Demand on Utilization-Adjusted TFP," VfS Annual Conference 2022 (Basel): Big Data in Economics 264103, Verein für Socialpolitik / German Economic Association.
    3. Gantert, Konstantin, 2022. "The impact of active aggregate demand on utilisation-adjusted TFP," IWH Discussion Papers 9/2022, Halle Institute for Economic Research (IWH).
    4. del Río, Fernando & Lores, Francisco-Xavier, 2023. "Accounting for the role of investment frictions in recessions," MPRA Paper 116024, University Library of Munich, Germany.
    5. William Gatt, 2022. "MEDSEA-FIN: an estimated DSGE model with housing and financial frictions for Malta," CBM Working Papers WP/05/2022, Central Bank of Malta.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adjemian, Stéphane & Juillard, Michel & Karamé, Fréderic & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2024. "Dynare: Reference Manual, Version 6," Dynare Working Papers 80, CEPREMAP, revised May 2024.
    2. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    3. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    4. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    5. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    6. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    7. McKnight, Stephen & Mihailov, Alexander & Rumler, Fabio, 2020. "Inflation forecasting using the New Keynesian Phillips Curve with a time-varying trend," Economic Modelling, Elsevier, vol. 87(C), pages 383-393.
    8. Martin Bodenstein & Christopher J. Erceg & Luca Guerrieri, 2017. "The effects of foreign shocks when interest rates are at zero," Canadian Journal of Economics, Canadian Economics Association, vol. 50(3), pages 660-684, August.
    9. Zhongjun Qu & Fan Zhuo, 2021. "Likelihood Ratio-Based Tests for Markov Regime Switching," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(2), pages 937-968.
    10. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    11. Born, Benjamin & Pfeifer, Johannes, 2014. "Policy risk and the business cycle," Journal of Monetary Economics, Elsevier, vol. 68(C), pages 68-85.
    12. Ivashchenko, Sergey & Mutschler, Willi, 2020. "The effect of observables, functional specifications, model features and shocks on identification in linearized DSGE models," Economic Modelling, Elsevier, vol. 88(C), pages 280-292.
    13. Luca Sala, 2015. "Dsge Models in the Frequency Domains," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 219-240, March.
    14. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    15. Prosper Dovonon & Alastair R. Hall, 2017. "The Asymptotic Properties of GMM and Indirect Inference Under Second-Order Identification," Economics Discussion Paper Series 1705, Economics, The University of Manchester.
    16. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.
    17. Dovonon, Prosper & Hall, Alastair R., 2018. "The asymptotic properties of GMM and indirect inference under second-order identification," Journal of Econometrics, Elsevier, vol. 205(1), pages 76-111.
    18. Leith, Campbell & Malley, Jim, 2005. "Estimated general equilibrium models for the evaluation of monetary policy in the US and Europe," European Economic Review, Elsevier, vol. 49(8), pages 2137-2159, November.
    19. Daniel O. Beltran & David Draper, 2018. "Estimating dynamic macroeconomic models: how informative are the data?," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 501-520, February.
    20. Ríos-Rull, José-Víctor & Schorfheide, Frank & Fuentes-Albero, Cristina & Kryshko, Maxym & Santaeulàlia-Llopis, Raül, 2012. "Methods versus substance: Measuring the effects of technology shocks," Journal of Monetary Economics, Elsevier, vol. 59(8), pages 826-846.

    More about this item

    Keywords

    Dynare; Numerical methods; Perturbation; Rational expectations;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpm:dynare:072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sébastien Villemot (email available below). General contact details of provider: https://edirc.repec.org/data/ceprefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.