IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Estimating nonlinear DSGE models by the simulated method of moments: With an application to business cycles

  • Ruge-Murcia, Francisco

This paper studies the application of the simulated method of moments (SMM) to the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte-Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvatures and departures from certainty equivalence. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, the small-sample distribution of the estimates is not always well approximated by the asymptotic Normal distribution. An empirical application to the macroeconomic effects of skewed disturbances shows that negatively skewed productivity shocks induce agents to accumulate additional capital and can generate asymmetric business cycles.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165188912000231
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 36 (2012)
Issue (Month): 6 ()
Pages: 914-938

as
in new window

Handle: RePEc:eee:dyncon:v:36:y:2012:i:6:p:914-938
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
  2. Tobin, James, 1972. "Inflation and Unemployment," American Economic Review, American Economic Association, vol. 62(1), pages 1-18, March.
  3. Scott, A. & Acemoglu, D., 1995. "Asymmetric Business Cycles: Theory and Time-series Evidence," Economics Series Working Papers 99173, University of Oxford, Department of Economics.
  4. Francisco J. Ruge-Murcia, 2004. "Methods to Estimate Dynamic Stochastic General Equilibrium Models," 2004 Meeting Papers 83, Society for Economic Dynamics.
  5. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  6. Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
  7. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  8. Gary Hansen, 2010. "Indivisible Labor and the Business Cycle," Levine's Working Paper Archive 233, David K. Levine.
  9. Manuel S. Santos & Adrian Peralta-Alva, 2003. "Accuracy of Simulations for Stochastic Dynamic Models," Levine's Bibliography 666156000000000264, UCLA Department of Economics.
  10. Kim, Jinill & Ruge-Murcia, Francisco J., 2007. "How Much Inflation is Necessary to Grease the Wheels?," Cahiers de recherche 2007-10, Universite de Montreal, Departement de sciences economiques.
  11. Stephanie Schmitt-Grohe & Martin Uribe, 2001. "Solving Dynamic General Equilibrium Models Using a Second-Order Approximation to the Policy Function," Departmental Working Papers 200106, Rutgers University, Department of Economics.
  12. Robert J. Barro, 2007. "Rare Disasters, Asset Prices, and Welfare Costs," NBER Working Papers 13690, National Bureau of Economic Research, Inc.
  13. Lombardo, Giovanni, 2010. "On approximating DSGE models by series expansions," Working Paper Series 1264, European Central Bank.
  14. Jes�s Fern�ndez-Villaverde & Juan F. Rubio-Ram�rez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1059-1087.
  15. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  16. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
  17. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
  18. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  19. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  20. Barro, Robert, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," Scholarly Articles 3208215, Harvard University Department of Economics.
  21. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  22. Brock, William A. & Mirman, Leonard J., 1972. "Optimal economic growth and uncertainty: The discounted case," Journal of Economic Theory, Elsevier, vol. 4(3), pages 479-513, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:36:y:2012:i:6:p:914-938. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.