IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v30y2015i2p219-240.html
   My bibliography  Save this article

Dsge Models in the Frequency Domains

Author

Listed:
  • Luca Sala

Abstract

We use frequency domain techniques to estimate a medium-scale DSGE model on different frequency bands. We show that goodness of t, forecasting performance and parameter estimates vary substantially with the frequency bands over which the model is estimated. Estimates obtained using subsets of frequencies are characterized by signicantly different parameters, an indication that the model cannot match all frequencies with one set of parameters. In particular, we find that: i) the low frequency properties of the data strongly affect parameter estimates obtained in the time domain; ii) the importance of economic frictions in the model changes when different subsets of frequencies are used in estimation. This is particularly true for the investment cost friction and habit persistence: when low frequencies are present in the estimation, the investment cost friction and habit persistence are estimated to be higher than when low frequencies are absent. JEL Classication: C11, C32, E32 Keywords: DSGE models, frequency domain, band maximum likelihood.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Luca Sala, 2015. "Dsge Models in the Frequency Domains," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 219-240, March.
  • Handle: RePEc:wly:japmet:v:30:y:2015:i:2:p:219-240
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 433-451.
    2. Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
    3. Luca Sala & Ulf Soderstrom & Antonella Trigari, 2010. "The Output Gap, the Labor Wedge, and the Dynamic Behavior of Hours," Working Papers 365, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    4. Watson, Mark W, 1993. "Measures of Fit for Calibrated Models," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 1011-1041, December.
    5. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    6. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    7. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    8. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    9. Iskrev, Nikolay, 2010. "Local identification in DSGE models," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 189-202, March.
    10. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    11. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    12. Cogley, Timothy, 2001. "A Frequency Decomposition of Approximation Errors in Stochastic Discount Factor Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(2), pages 473-503, May.
    13. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    14. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    15. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    16. Christopher J. Erceg & Dale W. Henderson & Andrew T. Levin, 2019. "Optimal Monetary Policy with Staggered Wage and Price Contracts," Credit and Capital Markets, Credit and Capital Markets, vol. 52(4), pages 537-571.
    17. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    18. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    19. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    20. Altug, Sumru, 1989. "Time-to-Build and Aggregate Fluctuations: Some New Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 889-920, November.
    21. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    22. Negro, Marco Del & Schorfheide, Frank, 2013. "DSGE Model-Based Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 57-140, Elsevier.
    23. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    24. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    25. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    26. Berkowitz, Jeremy, 2001. "Generalized spectral estimation of the consumption-based asset pricing model," Journal of Econometrics, Elsevier, vol. 104(2), pages 269-288, September.
    27. Pablo A. Guerron-Quintana, 2010. "What you match does matter: the effects of data on DSGE estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 774-804.
    28. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    29. Kimball, Miles S, 1995. "The Quantitative Analytics of the Basic Neomonetarist Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 27(4), pages 1241-1277, November.
    30. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    31. Rabanal, Pau & Rubio-Ramirez, Juan F., 2005. "Comparing New Keynesian models of the business cycle: A Bayesian approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1151-1166, September.
    32. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    33. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    34. Hansen, Lars Peter & Sargent, Thomas J., 1993. "Seasonality and approximation errors in rational expectations models," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 21-55.
    35. Sargent, Thomas J, 1989. "Two Models of Measurements and the Investment Accelerator," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 251-287, April.
    36. Singleton, Kenneth J., 1988. "Econometric issues in the analysis of equilibrium business cycle models," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 361-386.
    37. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Fei, 2018. "A Frequency-Domain Approach to Dynamic Macroeconomic Models," MPRA Paper 90487, University Library of Munich, Germany.
    2. Paul Ho, 2020. "Estimating the Effects of Demographics on Interest Rates: A Robust Bayesian Perspective," Working Paper 20-14, Federal Reserve Bank of Richmond.
    3. Kliem, Martin & Kriwoluzky, Alexander & Sarferaz, Samad, 2016. "Monetary–fiscal policy interaction and fiscal inflation: A tale of three countries," European Economic Review, Elsevier, vol. 88(C), pages 158-184.
    4. Dieppe, Alistair & Francis, Neville & Kindberg-Hanlon, Gene, 2021. "The identification of dominant macroeconomic drivers: coping with confounding shocks," Working Paper Series 2534, European Central Bank.
    5. Gehrke, Britta & Yao, Fang, 2017. "Are supply shocks important for real exchange rates? A fresh view from the frequency-domain," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 99-114.
    6. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    7. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    8. Maik H. Wolters, 2018. "How the baby boomers' retirement wave distorts model‐based output gap estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 680-689, August.
    9. Thomas A. Lubik & Christian Matthes & Fabio Verona, 2019. "Assessing U.S. Aggregate Fluctuations Across Time and Frequencies," Working Paper 19-6, Federal Reserve Bank of Richmond.
    10. Paul Ho, 2019. "Global Robust Bayesian Analysis in Large Models," 2019 Meeting Papers 390, Society for Economic Dynamics.
    11. Mario Forni & Luca Gambetti & Luca Sala, 2016. "VAR Information and the Empirical Validation of DSGE Models," Center for Economic Research (RECent) 119, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    12. Caraiani, Petre & Gupta, Rangan, 2020. "Is the response of the bank of England to exchange rate movements frequency-dependent?," Journal of Macroeconomics, Elsevier, vol. 63(C).
    13. Paul Ho, 2020. "Global Robust Bayesian Analysis in Large Models," Working Paper 20-07, Federal Reserve Bank of Richmond.
    14. Majid M. Al-Sadoon, 2020. "The Spectral Approach to Linear Rational Expectations Models," Papers 2007.13804, arXiv.org, revised Feb 2021.
    15. Gallegati, Marco & Giri, Federico & Palestrini, Antonio, 2019. "DSGE model with financial frictions over subsets of business cycle frequencies," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 152-163.
    16. Ross Doppelt & Keith O'Hara, 2018. "Bayesian Estimation of Fractionally Integrated Vector Autoregressions and an Application to Identified Technology Shocks," 2018 Meeting Papers 1212, Society for Economic Dynamics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekiros, Stelios D. & Paccagnini, Alessia, 2014. "Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 298-323.
    2. Bekiros Stelios & Paccagnini Alessia, 2015. "Estimating point and density forecasts for the US economy with a factor-augmented vector autoregressive DSGE model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(2), pages 107-136, April.
    3. Alessia Paccagnini, 2012. "Comparing Hybrid DSGE Models," Working Papers 228, University of Milano-Bicocca, Department of Economics, revised Dec 2012.
    4. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    5. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    6. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    7. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    8. Canova, Fabio, 2014. "Bridging DSGE models and the raw data," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 1-15.
    9. Charles Olivier Mao Takongmo, 2021. "DSGE models, detrending, and the method of moments," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 67-99, January.
    10. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    11. Tim Oliver Berg, 2016. "Multivariate Forecasting with BVARs and DSGE Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(8), pages 718-740, December.
    12. Sun Xiaojin & Tsang Kwok Ping, 2019. "What cycles? Data detrending in DSGE models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(3), pages 1-23, June.
    13. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    14. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    16. Stan du Plessis & Ben Smit & Rudi Steinbach, 2014. "Working Paper WP1404 A mediumsized open economy DSGE model of South Africa," Working Papers 6319, South African Reserve Bank.
    17. Hürtgen, Patrick, 2014. "Consumer misperceptions, uncertain fundamentals, and the business cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 279-292.
    18. Inoue, Atsushi & Kuo, Chun-Hung & Rossi, Barbara, 2020. "Identifying the sources of model misspecification," Journal of Monetary Economics, Elsevier, vol. 110(C), pages 1-18.
    19. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    20. Maik H. Wolters, 2018. "How the baby boomers' retirement wave distorts model‐based output gap estimates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 680-689, August.

    More about this item

    Keywords

    dsge models; frequency domain; band maximum likelihood.
    (this abstract was borrowed from another version of this item.)
    ;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:30:y:2015:i:2:p:219-240. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.