IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/2020.html
   My bibliography  Save this paper

Forecasting euro area recessions in real-time

Author

Listed:
  • Pirschel, Inske

Abstract

I present evidence that the linear mixed-frequency Bayesian VAR provides very sharp and well calibrated monthly real-time recession probabilities for the euro area for the period from 2004 until 2013. The model outperforms not only the univariate regime-switching models for a number of hard and soft economic indicators and their optimal linear combinations, but also a real-time recession index obtained with Google Trends data. This result holds irrespective of whether the joint predictive distribution of several economic indicators or the marginal distribution of real GDP growth is evaluated to extract the real-time recession probabilities of the mixed-frequency Bayesian VAR. The inclusion of the confidence index in industry turns out to be crucial for the performance of the model.

Suggested Citation

  • Pirschel, Inske, 2016. "Forecasting euro area recessions in real-time," Kiel Working Papers 2020, Kiel Institute for the World Economy (IfW).
  • Handle: RePEc:zbw:ifwkwp:2020
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/126154/1/846325160.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Mark Doms & Norman J. Morin, 2004. "Consumer sentiment, the economy, and the news media," Finance and Economics Discussion Series 2004-51, Board of Governors of the Federal Reserve System (U.S.).
    4. Jan Grossarth-Maticek & Johannes Mayr, 2008. "Medienberichte als Konjunkturindikator," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 61(07), pages 17-29, April.
    5. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
    6. Nikolaos Askitas & Klaus F. Zimmermann, 2009. "Google Econometrics and Unemployment Forecasting," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 55(2), pages 107-120.
    7. Schreiber, Sven & Soldatenkova, Natalia, 2016. "Anticipating business-cycle turning points in real time using density forecasts from a VAR," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 166-187.
    8. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    9. Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michele Modugno, 2012. "An Area-Wide Real-Time Database for the Euro Area," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1000-1013, November.
    10. Schumacher, Christian, 2014. "MIDAS and bridge equations," Discussion Papers 26/2014, Deutsche Bundesbank.
    11. Frank Schorfheide & Dongho Song, 2015. "Real-Time Forecasting With a Mixed-Frequency VAR," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
    12. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    13. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    14. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    15. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    16. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    17. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    18. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223, April.
    19. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    20. David Iselin & Boriss Siliverstovs, 2013. "The R-word index for Switzerland," Applied Economics Letters, Taylor & Francis Journals, vol. 20(11), pages 1032-1035, July.
    21. Dovern, Jonas & Huber, Florian, 2015. "Global prediction of recessions," Economics Letters, Elsevier, vol. 133(C), pages 81-84.
    22. Paul Grauwe, 2011. "Animal spirits and monetary policy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 423-457, June.
    23. Simeon Vosen & Torsten Schmidt, 2011. "Forecasting private consumption: survey‐based indicators vs. Google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(6), pages 565-578, September.
    24. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    25. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    26. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    27. Gerhard Bry & Charlotte Boschan, 1971. "Foreword to "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs"," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages -1, National Bureau of Economic Research, Inc.
    28. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    29. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    30. Sims, Christopher A & Zha, Tao, 1998. "Bayesian Methods for Dynamic Multivariate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 949-968, November.
    31. Fagan, Gabriel & Henry, Jérôme & Mestre, Ricardo, 2001. "An area-wide model (AWM) for the euro area," Working Paper Series 42, European Central Bank.
    32. Knedlik, Tobias, 2014. "The impact of preferences on early warning systems — The case of the European Commission's Scoreboard," European Journal of Political Economy, Elsevier, vol. 34(C), pages 157-166.
    33. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    34. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    35. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    36. Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
    37. Harding, Don & Pagan, Adrian, 2002. "Dissecting the cycle: a methodological investigation," Journal of Monetary Economics, Elsevier, vol. 49(2), pages 365-381, March.
    38. Österholm, Pär, 2012. "The limited usefulness of macroeconomic Bayesian VARs when estimating the probability of a US recession," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 76-86.
    39. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    40. Gael Martin, 2012. "A Review of The Oxford Handbook of Bayesian Econometrics edited by Geweke (John), Koop (Gary) and van Dijk (Herman)," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 11-15, October.
    41. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    42. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    43. Foroni, Claudia & Marcellino, Massimiliano, 2014. "A comparison of mixed frequency approaches for nowcasting Euro area macroeconomic aggregates," International Journal of Forecasting, Elsevier, vol. 30(3), pages 554-568.
    44. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    45. Boysen-Hogrefe, Jens & Jannsen, Nils & Plödt, Martin & Schwarzmüller, Tim, 2015. "An empirical evaluation of macroeconomic surveillance in the European Union," Kiel Working Papers 2014, Kiel Institute for the World Economy (IfW).
    46. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    47. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    48. Jacques Anas & Monica Billio & Laurent Ferrara & Gian Luigi Mazzi, 2008. "A System For Dating And Detecting Turning Points In The Euro Area," Manchester School, University of Manchester, vol. 76(5), pages 549-577, September.
    49. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, February.
    50. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, March.
    51. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    52. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    53. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McAdam, Peter & Warne, Anders, 2019. "Euro area real-time density forecasting with financial or labor market frictions," International Journal of Forecasting, Elsevier, vol. 35(2), pages 580-600.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
    2. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    3. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    4. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    5. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    6. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    7. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    8. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    9. Aastveit, Knut Are & Jore, Anne Sofie & Ravazzolo, Francesco, 2016. "Identification and real-time forecasting of Norwegian business cycles," International Journal of Forecasting, Elsevier, vol. 32(2), pages 283-292.
    10. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    11. Inske Pirschel & Maik H. Wolters, 2018. "Forecasting with large datasets: compressing information before, during or after the estimation?," Empirical Economics, Springer, vol. 55(2), pages 573-596, September.
    12. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    13. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
    14. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    15. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    16. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    17. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    18. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    19. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015. "Markov-switching mixed-frequency VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
    20. Knotek, Edward S. & Zaman, Saeed, 2019. "Financial nowcasts and their usefulness in macroeconomic forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.

    More about this item

    Keywords

    Density nowcasting; Real-time recession forecasting; Mixed-frequency data; Bayesian VAR; Regime-switching models; Linear opinion pool; Google Trends;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:2020. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - Leibniz Information Centre for Economics). General contact details of provider: http://edirc.repec.org/data/iwkiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.