IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v72y2010i1p71-91.html
   My bibliography  Save this article

Combining probability forecasts

Author

Listed:
  • Roopesh Ranjan
  • Tilmann Gneiting

Abstract

Summary. Linear pooling is by far the most popular method for combining probability forecasts. However, any non‐trivial weighted average of two or more distinct, calibrated probability forecasts is necessarily uncalibrated and lacks sharpness. In view of this, linear pooling requires recalibration, even in the ideal case in which the individual forecasts are calibrated. Towards this end, we propose a beta‐transformed linear opinion pool for the aggregation of probability forecasts from distinct, calibrated or uncalibrated sources. The method fits an optimal non‐linearly recalibrated forecast combination, by compositing a beta transform and the traditional linear opinion pool. The technique is illustrated in a simulation example and in a case‐study on statistical and National Weather Service probability of precipitation forecasts.

Suggested Citation

  • Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
  • Handle: RePEc:bla:jorssb:v:72:y:2010:i:1:p:71-91
    DOI: 10.1111/j.1467-9868.2009.00726.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2009.00726.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2009.00726.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morris H. DeGroot & Julia Mortera, 1991. "Optimal Linear Opinion Pools," Management Science, INFORMS, vol. 37(5), pages 546-558, May.
    2. Mohamed N. Jouini & Robert T. Clemen, 1996. "Copula Models for Aggregating Expert Opinions," Operations Research, INFORMS, vol. 44(3), pages 444-457, June.
    3. Iversen, Edwin S & Parmigiani, Giovanni & Chen, Sining, 2008. "Multiple Model Evaluation Absent the Gold Standard Through Model Combination," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 897-909.
    4. Vladimir Vovk & Glenn Shafer, 2005. "Good randomized sequential probability forecasting is always possible," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 747-763, November.
    5. Robert Winkler & Victor Jose, 2008. "Comments on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 251-255, August.
    6. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    7. Tilmann Gneiting, 2008. "Editorial: Probabilistic forecasting," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 319-321, April.
    8. Stephen C. Hora, 2004. "Probability Judgments for Continuous Quantities: Linear Combinations and Calibration," Management Science, INFORMS, vol. 50(5), pages 597-604, May.
    9. Robert L. Winkler & Roy M. Poses, 1993. "Evaluating and Combining Physicians' Probabilities of Survival in an Intensive Care Unit," Management Science, INFORMS, vol. 39(12), pages 1526-1543, December.
    10. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    11. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    12. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    13. Wallsten, Thomas S. & Diederich, Adele, 2001. "Understanding pooled subjective probability estimates," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 1-18, January.
    14. Murphy, Allan H. & Winkler, Robert L., 1992. "Diagnostic verification of probability forecasts," International Journal of Forecasting, Elsevier, vol. 7(4), pages 435-455, March.
    15. Reinhard Selten, 1998. "Axiomatic Characterization of the Quadratic Scoring Rule," Experimental Economics, Springer;Economic Science Association, vol. 1(1), pages 43-61, June.
    16. Alvaro Sandroni & Rann Smorodinsky & Rakesh V. Vohra, 2003. "Calibration with Many Checking Rules," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 141-153, February.
    17. Regnier, Eva, 2008. "Doing something about the weather," Omega, Elsevier, vol. 36(1), pages 22-32, February.
    18. Mary Kynn, 2008. "The ‘heuristics and biases’ bias in expert elicitation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 239-264, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    2. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    3. Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022. "Score-based calibration testing for multivariate forecast distributions," Papers 2211.16362, arXiv.org, revised Dec 2023.
    4. Stephen Hora & Erim Kardeş, 2015. "Calibration, sharpness and the weighting of experts in a linear opinion pool," Annals of Operations Research, Springer, vol. 229(1), pages 429-450, June.
    5. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    6. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    7. D. J. Johnstone & S. Jones & V. R. R. Jose & M. Peat, 2013. "Measures of the economic value of probabilities of bankruptcy," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 635-653, June.
    8. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    9. Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
    10. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    11. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    12. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    13. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    14. Donnacha Bolger & Brett Houlding, 2016. "Reliability updating in linear opinion pooling for multiple decision makers," Journal of Risk and Reliability, , vol. 230(3), pages 309-322, June.
    15. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    17. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    18. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    19. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.
    20. Nesvold, Erik & Bratvold, Reidar B., 2022. "Debiasing probabilistic oil production forecasts," Energy, Elsevier, vol. 258(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:72:y:2010:i:1:p:71-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.