IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2418.html
   My bibliography  Save this paper

The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting

Author

Listed:
  • Diakonova, M.
  • Molina, L.
  • Mueller, H.
  • Pérez, J. J.
  • Rauh, C.

Abstract

It is widely accepted that episodes of social unrest, conflict, political tensions and policy uncertainty affect the economy. Nevertheless, the real-time dimension of such relationships is less studied, and it remains unclear how to incorporate them in a forecasting framework. This can be partly explained by a certain divide between the economic and political science contributions in this area, as well as the traditional lack of availability of timely high-frequency indicators measuring such phenomena. The latter constraint, though, is becoming less of a limiting factor through the production of text-based indicators. In this paper we assemble a dataset of such monthly measures of what we call “institutional instability†, for three representative emerging market economies: Brazil, Colombia and Mexico. We then forecast quarterly GDP by adding these new variables to a standard macro-forecasting model using different methods. Our results strongly suggest that capturing institutional instability above a broad set of standard high-frequency indicators is useful when forecasting quarterly GDP. We also analyse relative strengths and weaknesses of the approach.

Suggested Citation

  • Diakonova, M. & Molina, L. & Mueller, H. & Pérez, J. J. & Rauh, C., 2024. "The Information Content of Conflict, Social Unrest and Policy Uncertainty Measures for Macroeconomic Forecasting," Cambridge Working Papers in Economics 2418, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2418
    Note: cr542
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe2418.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    3. Hannes Mueller & Christopher Rauh, 2022. "The Hard Problem of Prediction for Conflict Prevention," Journal of the European Economic Association, European Economic Association, vol. 20(6), pages 2440-2467.
    4. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    5. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    6. Asaf Zussman & Noam Zussman, 2006. "Assassinations: Evaluating the Effectiveness of an Israeli Counterterrorism Policy Using Stock Market Data," Journal of Economic Perspectives, American Economic Association, vol. 20(2), pages 193-206, Spring.
    7. Le Ha Thu & Roberto Leon-Gonzalez, 2021. "Forecasting Macroeconomic Variables in Emerging Economies: An Application to Vietnam," GRIPS Discussion Papers 21-03, National Graduate Institute for Policy Studies.
    8. Timothy Besley & Hannes Mueller, 2018. "Predation, Protection, and Productivity: A Firm-Level Perspective," American Economic Journal: Macroeconomics, American Economic Association, vol. 10(2), pages 184-221, April.
    9. Danilo Leiva-Leon & Gabriel Perez-Quiros & Eyno Rots, 2020. "Real-time weakness of the global economy: a first assessment of the coronavirus crisis," Working Papers 2015, Banco de España.
    10. Daron Acemoglu & Simon Johnson & James A. Robinson, 2001. "The Colonial Origins of Comparative Development: An Empirical Investigation," American Economic Review, American Economic Association, vol. 91(5), pages 1369-1401, December.
    11. Acemoglu, Daron & Johnson, Simon & Robinson, James & Thaicharoen, Yunyong, 2003. "Institutional causes, macroeconomic symptoms: volatility, crises and growth," Journal of Monetary Economics, Elsevier, vol. 50(1), pages 49-123, January.
    12. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    13. Simon Johnson & John McMillan & Christopher Woodruff, 2002. "Property Rights and Finance," American Economic Review, American Economic Association, vol. 92(5), pages 1335-1356, December.
    14. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    15. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    16. Hadzi-Vaskov Metodij & Pienknagura Samuel & Ricci Luca Antonio, 2023. "The Macroeconomic Impact of Social Unrest," The B.E. Journal of Macroeconomics, De Gruyter, vol. 23(2), pages 917-958, June.
    17. Besley, Timothy & Ghatak, Maitreesh, 2010. "Property Rights and Economic Development," Handbook of Development Economics, in: Dani Rodrik & Mark Rosenzweig (ed.), Handbook of Development Economics, edition 1, volume 5, chapter 0, pages 4525-4595, Elsevier.
    18. Andres–Escayola, Erik & Berganza, Juan Carlos & Campos, Rodolfo G. & Molina, Luis, 2023. "A BVAR toolkit to assess macrofinancial risks in Brazil and Mexico," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(1).
    19. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    20. Hannes Mueller & Christopher Rauh, 2022. "Using past violence and current news to predict changes in violence," International Interactions, Taylor & Francis Journals, vol. 48(4), pages 579-596, July.
    21. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    22. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    23. Philip Barrett & Mariia Bondar & Sophia Chen & Mali Chivakul & Deniz Igan, 2024. "Pricing protest: the response of financial markets to social unrest," Review of Finance, European Finance Association, vol. 28(4), pages 1419-1450.
    24. Timothy Besley & Hannes Mueller, 2012. "Estimating the Peace Dividend: The Impact of Violence on House Prices in Northern Ireland," American Economic Review, American Economic Association, vol. 102(2), pages 810-833, April.
    25. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    26. Ghirelli, Corinna & Pérez, Javier J. & Urtasun, Alberto, 2019. "A new economic policy uncertainty index for Spain," Economics Letters, Elsevier, vol. 182(C), pages 64-67.
    27. Gauvin, L. & McLoughlin, C. & Reinhardt, D., 2013. "Policy Uncertainty Spillovers to Emerging Markets - Evidence from Capital Flows," Working papers 435, Banque de France.
    28. Timothy Besley & Hannes Mueller, 2018. "Institutions, Volatility, and Investment," Journal of the European Economic Association, European Economic Association, vol. 16(3), pages 604-649.
    29. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    30. Barrett, Philip & Appendino, Maximiliano & Nguyen, Kate & de Leon Miranda, Jorge, 2022. "Measuring social unrest using media reports," Journal of Development Economics, Elsevier, vol. 158(C).
    31. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    32. Tarek A Hassan & Stephan Hollander & Laurence van Lent & Ahmed Tahoun, 2019. "Firm-Level Political Risk: Measurement and Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2135-2202.
    33. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    34. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "MIDAS versus mixed-frequency VAR: nowcasting GDP in the euro area," Discussion Paper Series 1: Economic Studies 2009,07, Deutsche Bundesbank.
    35. Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016. "The forecast combination puzzle: A simple theoretical explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
    36. Carrière-Swallow, Yan & Céspedes, Luis Felipe, 2013. "The impact of uncertainty shocks in emerging economies," Journal of International Economics, Elsevier, vol. 90(2), pages 316-325.
    37. Ángel Estrada & Luis Guirola & Iván Kataryniuk & Jaime Martínez-Martín, 2020. "The use of BVARs in the analysis of emerging economies," Occasional Papers 2001, Banco de España.
    38. Thu, Le Ha & Leon-Gonzalez, Roberto, 2021. "Forecasting macroeconomic variables in emerging economies," Journal of Asian Economics, Elsevier, vol. 77(C).
    39. Michael Zhemkov, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, CEPII research center, issue 168, pages 10-24.
    40. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    41. Willard, Kristen L & Guinnane, Timothy W & Rosen, Harvey S, 1996. "Turning Points in the Civil War: Views from the Greenback Market," American Economic Review, American Economic Association, vol. 86(4), pages 1001-1018, September.
    42. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    43. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    44. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    45. Tahsin Saadi Sedik & Rui Xu, 2020. "A Vicious Cycle: How Pandemics Lead to Economic Despair and Social Unrest," IMF Working Papers 2020/216, International Monetary Fund.
    46. JÖrg Breitung & Christoph Roling, 2015. "Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(7), pages 588-603, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Vesco & Ghassan Baliki & Tilman Brück & Debarati Guha-Sapir & Jonathan Hall & Stefan Döring & Anneli Eriksson & Hanne Fjelde & Carl Henrik Knutsen & Maxine R. Leis & Hannes Mueller & Christopher, 2024. "The impacts of armed conflict on human development: a review of the literature," HiCN Working Papers 414, Households in Conflict Network.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diakonova, Marina & Ghirelli, Corinna & Molina, Luis & Pérez, Javier J., 2023. "The economic impact of conflict-related and policy uncertainty shocks: The case of Russia," International Economics, Elsevier, vol. 174(C), pages 69-90.
    2. Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
    3. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    6. Knut Are Aastveit & Tuva Marie Fastbø & Eleonora Granziera & Kenneth Sæterhagen Paulsen & Kjersti Næss Torstensen, 2020. "Nowcasting Norwegian household consumption with debit card transaction data," Working Paper 2020/17, Norges Bank.
    7. Philip Barrett & Mariia Bondar & Sophia Chen & Mali Chivakul & Deniz Igan, 2024. "Pricing protest: the response of financial markets to social unrest," Review of Finance, European Finance Association, vol. 28(4), pages 1419-1450.
    8. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    9. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    10. Timothy Besley & Thiemo Fetzer & Hannes Mueller, 2023. "How Big Is the Media Multiplier? Evidence from Dyadic News Data," CESifo Working Paper Series 10619, CESifo.
    11. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    12. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    13. Anastasiia Pankratova, 2024. "Forecasting Key Macroeconomic Indicators Using DMA and DMS Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 83(1), pages 32-52, March.
    14. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    15. Raul Ibarra & Luis M. Gomez-Zamudio, 2017. "Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
    16. Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
    17. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    18. Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
    19. Michal Franta & David Havrlant & Marek Rusnák, 2016. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.

    More about this item

    Keywords

    Forecasting; Social Unrest; Social Conflict; Policy Uncertainty; Forecasting GDP; Natural Language Processing; Geopolitical Risk;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • D74 - Microeconomics - - Analysis of Collective Decision-Making - - - Conflict; Conflict Resolution; Alliances; Revolutions
    • N16 - Economic History - - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations - - - Latin America; Caribbean

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.