IDEAS home Printed from https://ideas.repec.org/a/taf/ginixx/v48y2022i4p579-596.html

Using past violence and current news to predict changes in violence

Author

Listed:
  • Hannes Mueller
  • Christopher Rauh

Abstract

This article proposes a new method for predicting escalations and de-escalations of violence using a model which relies on conflict history and text features. The text features are generated from over 3.5 million newspaper articles using a so-called topic-model. We show that the combined model relies to a large extent on conflict dynamics, but that text is able to contribute meaningfully to the prediction of rare outbreaks of violence in previously peaceful countries. Given the very powerful dynamics of the conflict trap these cases are particularly important for prevention efforts.Este artículo propone un nuevo método para la predicción de escaladas y desescaladas de violencia a través de la aplicación de un modelo basado en los antecedentes del conflicto y las características propias del texto. Las características del texto se generan a partir de más de 3,5 millones de artículos de periódicos mediante el uso de lo que se denomina “modelo de tópicos”. Demostramos que, si bien este modelo combinado hace referencia a una extensa dinámica del conflicto, el texto es una contribución relevante que permite predecir los estallidos de violencia inesperados en países que antes eran pacíficos. Dada la dinámica de gran intensidad característica de la trampa del conflicto, estos casos son de especial importancia en lo que se refiere a las iniciativas de prevención.Dans cet article, nous proposons une nouvelle méthode destinée à anticiper les escalades et désescalades de violence grâce à un modèle reposant sur les antécédents conflictuels et sur des caractéristiques textuelles. Ces caractéristiques sont extraites à partir de plus de 3,5 millions d’articles de presse à l’aide d’un modèle thématique (topic model). Nous montrons que si ce modèle mixte s’appuie largement sur les dynamiques conflictuelles, les données textuelles peuvent être très utiles en vue d’anticiper les rares explosions de violence dans les pays habituellement pacifiques. Étant donné la puissante dynamique qui sous-tend les conflits récurrents, les exemples exposés revêtent une importance particulière dans une optique de prévention.

Suggested Citation

  • Hannes Mueller & Christopher Rauh, 2022. "Using past violence and current news to predict changes in violence," International Interactions, Taylor & Francis Journals, vol. 48(4), pages 579-596, July.
  • Handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:579-596
    DOI: 10.1080/03050629.2022.2063853
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03050629.2022.2063853
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03050629.2022.2063853?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. BBVA Research & Alvaro Ortiz & Tomasa Rodrigo, 2025. "Global | Geopolítica, geoeconomía y riesgo: un enfoque basado en aprendizaje automático [Global | Geopolitics, geoeconomics and risk: a machine learning approach]," Working Papers 25/14, BBVA Bank, Economic Research Department.
    2. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    3. Diakonova, Marina & Ghirelli, Corinna & Molina, Luis & Pérez, Javier J., 2023. "The economic impact of conflict-related and policy uncertainty shocks: The case of Russia," International Economics, Elsevier, vol. 174(C), pages 69-90.
    4. Racek, Daniel & Thurner, Paul W. & Davidson, Brittany I. & Zhu, Xiao Xiang & Kauermann, Göran, 2024. "Conflict forecasting using remote sensing data: An application to the Syrian civil war," International Journal of Forecasting, Elsevier, vol. 40(1), pages 373-391.
    5. repec:osf:osfxxx:q59dr_v1 is not listed on IDEAS

    More about this item

    JEL classification:

    • F21 - International Economics - - International Factor Movements and International Business - - - International Investment; Long-Term Capital Movements
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:ginixx:v:48:y:2022:i:4:p:579-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GINI20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.