IDEAS home Printed from https://ideas.repec.org/p/bbv/wpaper/2514.html

Global | Geopolítica, geoeconomía y riesgo: un enfoque basado en aprendizaje automático
[Global | Geopolitics, geoeconomics and risk: a machine learning approach]

Author

Listed:
  • BBVA Research
  • Alvaro Ortiz
  • Tomasa Rodrigo

Abstract

We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators for 42 countries across both emerging and developed markets. We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators for 42 countries across both emerging and developed markets.

Suggested Citation

  • BBVA Research & Alvaro Ortiz & Tomasa Rodrigo, 2025. "Global | Geopolítica, geoeconomía y riesgo: un enfoque basado en aprendizaje automático [Global | Geopolitics, geoeconomics and risk: a machine learning approach]," Working Papers 25/14, BBVA Bank, Economic Research Department.
  • Handle: RePEc:bbv:wpaper:2514
    as

    Download full text from publisher

    File URL: https://www.bbvaresearch.com/wp-content/uploads/2025/10/Geopolitics-geoeconomics-and-risk-a-machine-learning-approach.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    2. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    3. Benchimol, Jonathan & Palumbo, Luigi, 2024. "Sanctions and Russian online prices," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 225, pages 483-521.
    4. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    5. Fratzscher, Marcel, 2012. "Capital flows, push versus pull factors and the global financial crisis," Journal of International Economics, Elsevier, vol. 88(2), pages 341-356.
    6. Glick, Reuven & Rose, Andrew K., 1999. "Contagion and trade: Why are currency crises regional?," Journal of International Money and Finance, Elsevier, vol. 18(4), pages 603-617, August.
    7. Guillermo A. Calvo & Leonardo Leiderman & Carmen M. Reinhart, 1996. "Inflows of Capital to Developing Countries in the 1990s," Journal of Economic Perspectives, American Economic Association, vol. 10(2), pages 123-139, Spring.
    8. Gelos, R. Gaston & Sahay, Ratna & Sandleris, Guido, 2011. "Sovereign borrowing by developing countries: What determines market access?," Journal of International Economics, Elsevier, vol. 83(2), pages 243-254, March.
    9. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    10. Yuriy Gorodnichenko & Dimitris Georgarakos & Geoff Kenny & Olivier Coibion, 2025. "The Impact of Geopolitical Risk on Consumer Expectations and Spending," NBER Working Papers 34195, National Bureau of Economic Research, Inc.
    11. Bekaert, Geert & Hoerova, Marie & Lo Duca, Marco, 2013. "Risk, uncertainty and monetary policy," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 771-788.
    12. Bondarenko, Yevheniia & Lewis, Vivien & Rottner, Matthias & Schüler, Yves, 2024. "Geopolitical risk perceptions," Journal of International Economics, Elsevier, vol. 152(C).
    13. Caldara, Dario & Iacoviello, Matteo & Molligo, Patrick & Prestipino, Andrea & Raffo, Andrea, 2020. "The economic effects of trade policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 109(C), pages 38-59.
    14. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    15. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    16. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    17. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    18. Ahn, Daniel P. & Ludema, Rodney D., 2020. "The sword and the shield: The economics of targeted sanctions," European Economic Review, Elsevier, vol. 130(C).
    19. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    20. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    21. Mueller, Hannes & Rauh, Christopher, 2018. "Reading Between the Lines: Prediction of Political Violence Using Newspaper Text," American Political Science Review, Cambridge University Press, vol. 112(2), pages 358-375, May.
    22. Guillermo A. Calvo & Alejandro Izquierdo, 2004. "On the empirics of Sudden Stops: the relevance of balance-sheet effects," Proceedings, Federal Reserve Bank of San Francisco, issue jun.
    23. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    24. Bruno, Valentina & Shin, Hyun Song, 2015. "Capital flows and the risk-taking channel of monetary policy," Journal of Monetary Economics, Elsevier, vol. 71(C), pages 119-132.
    25. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    26. Hannes Mueller & Christopher Rauh, 2022. "Using past violence and current news to predict changes in violence," International Interactions, Taylor & Francis Journals, vol. 48(4), pages 579-596, July.
    27. Tarek A Hassan & Stephan Hollander & Laurence van Lent & Ahmed Tahoun, 2019. "Firm-Level Political Risk: Measurement and Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 2135-2202.
    28. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    29. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    30. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    31. Guillermo A. Calvo & Alejandro Izquierdo & Luis Fernando Mejía, 2004. "On the Empirics of Sudden Stops: The Relevance of Balance-Sheet Effects," Research Department Publications 4367, Inter-American Development Bank, Research Department.
    32. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    33. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    34. Alter, Adrian & Beyer, Andreas, 2014. "The dynamics of spillover effects during the European sovereign debt turmoil," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 134-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Seohyun, 2017. "Three essays on uncertainty: real and financial effects of uncertainty shocks," MPRA Paper 83617, University Library of Munich, Germany.
    2. Xinqian Du & Tian Pu, 2025. "U.S. economic uncertainty shocks and extreme capital flows episodes: An empirical analysis of emerging and developing economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 352-368, January.
    3. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Gauvin, L. & McLoughlin, C. & Reinhardt, D., 2013. "Policy Uncertainty Spillovers to Emerging Markets - Evidence from Capital Flows," Working papers 435, Banque de France.
    6. Jorge Lorca, 2021. "Capital Flows and Emerging Markets Fluctuations," Working Papers Central Bank of Chile 898, Central Bank of Chile.
    7. Jozef Barunik & Lubos Hanus, 2022. "Learning Probability Distributions in Macroeconomics and Finance," Papers 2204.06848, arXiv.org.
    8. Evrim Mandaci, Pınar & Azimli, Asil & Mandaci, Nazif, 2023. "The impact of geopolitical risks on connectedness among natural resource commodities: A quantile vector autoregressive approach," Resources Policy, Elsevier, vol. 85(PA).
    9. Assaf, Ata & Charif, Husni & Mokni, Khaled, 2021. "Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter?," Resources Policy, Elsevier, vol. 72(C).
    10. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    11. Choi, Sangyup & Furceri, Davide, 2019. "Uncertainty and cross-border banking flows," Journal of International Money and Finance, Elsevier, vol. 93(C), pages 260-274.
    12. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    13. Tan, Xueping & Zhong, Yiran & Vivian, Andrew & Geng, Yong & Wang, Ziyi & Zhao, Difei, 2024. "Towards an era of multi-source uncertainty: A systematic and bibliometric analysis," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    14. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Abdullah, Mohammad & Adeabah, David & Sahay, Vinita S., 2024. "Time-varying relationship between international monetary policy and energy markets," Energy Economics, Elsevier, vol. 131(C).
    15. Ben Jabeur, Sami & Bakkar, Yassine & Cepni, Oguzhan, 2025. "Do global COVOL and geopolitical risks affect clean energy prices? Evidence from explainable artificial intelligence models," Energy Economics, Elsevier, vol. 141(C).
    16. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
    17. Keijsers, Bart & van Dijk, Dick, 2025. "Does economic uncertainty predict real activity in real time?," International Journal of Forecasting, Elsevier, vol. 41(2), pages 748-762.
    18. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    19. Mokni, Khaled & Al-Shboul, Mohammed & Assaf, Ata, 2021. "Economic policy uncertainty and dynamic spillover among precious metals under market conditions: Does COVID-19 have any effects?," Resources Policy, Elsevier, vol. 74(C).
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • F51 - International Economics - - International Relations, National Security, and International Political Economy - - - International Conflicts; Negotiations; Sanctions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbv:wpaper:2514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSCAR DE LAS PENAS SANCHEZ-CARO (email available below). General contact details of provider: https://edirc.repec.org/data/ebbvaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.