IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On the network topology of variance decompositions: Measuring the connectedness of financial firms

  • Francis X. Diebold
  • Kamil Yilmaz

The authors propose several connectedness measures built from pieces of variance decompositions, and they argue that they provide natural and insightful measures of connectedness among financial asset returns and volatilities. The authors also show that variance decompositions define weighted, directed networks, so that their connectedness measures are intimately-related to key measures of connectedness used in the network literature. Building on these insights, the authors track both average and daily time-varying connectedness of major U.S. financial institutions' stock return volatilities in recent years, including during the financial crisis of 2007-2008.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.philadelphiafed.org/research-and-data/publications/working-papers/2011/wp11-45.pdf
Download Restriction: no

Paper provided by Federal Reserve Bank of Philadelphia in its series Working Papers with number 11-45.

as
in new window

Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:fip:fedpwp:11-45
Contact details of provider: Postal:
10 Independence Mall, Philadelphia, PA 19106-1574

Web page: http://www.philadelphiafed.org/

More information through EDIRC

Order Information: Web: http://www.phil.frb.org/econ/wps/index.html Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Franklin Allen & Ana Babus & Elena Carletti, 2010. "Financial Connections and Systemic Risk," NBER Chapters, in: Market Institutions and Financial Market Risk National Bureau of Economic Research, Inc.
  2. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
  3. Francis X. Diebold & Kamil Yilmaz, 2008. "Measuring financial asset return and volatility spillovers, with application to global equity markets," Working Papers 08-16, Federal Reserve Bank of Philadelphia.
  4. Allen, Franklin & Babus, Ana & Carletti, Elena, 2013. "Asset Commonality, Debt Maturity and Systemic Risk," Working Papers 10-30, University of Pennsylvania, Wharton School, Weiss Center.
  5. Dufour, J.M. & Renault, E., 1995. "Short-Run and Long-Rub Causality in Time Series: Theory," Cahiers de recherche 9538, Universite de Montreal, Departement de sciences economiques.
  6. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
  7. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, June.
  8. N. Lesca, 2010. "Introduction," Post-Print halshs-00640602, HAL.
  9. Wolfgang Karl Härdle & Ostap Okhrin & Yarema Okhrin, 2010. "Time varying Hierarchical Archimedean Copulae," SFB 649 Discussion Papers SFB649DP2010-018, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  11. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
  12. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
  13. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
  14. Viral V. Acharya, 2010. "Measuring systemic risk," Proceedings 1140, Federal Reserve Bank of Chicago.
  15. repec:cup:cbooks:9780511771576 is not listed on IDEAS
  16. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2013. "Financial network systemic risk contributions," CFS Working Paper Series 2013/20, Center for Financial Studies (CFS).
  17. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.
  18. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  19. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
  20. Pesaran, M. H. & Shin, Y., 1997. "Generalised Impulse Response Analysis in Linear Multivariate Models," Cambridge Working Papers in Economics 9710, Faculty of Economics, University of Cambridge.
  21. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, June.
  22. repec:fip:fedhpr:y:2010:i:may:p:65-71 is not listed on IDEAS
  23. Marcella Lucchetta & Gianni De Nicolo, 2012. "Systemic Real and Financial Risks; Measurement, Forecasting, and Stress Testing," IMF Working Papers 12/58, International Monetary Fund.
  24. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2010. "Measuring systemic risk," Working Paper 1002, Federal Reserve Bank of Cleveland.
  25. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2010. "Cascades in Networks and Aggregate Volatility," NBER Working Papers 16516, National Bureau of Economic Research, Inc.
  26. Francis X. Diebold & Kamil Yilmaz, 2010. "Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1001, Koc University-TUSIAD Economic Research Forum, revised Mar 2010.
  27. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedpwp:11-45. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Beth Paul)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.