IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Short and long run causality measures: Theory and inference

Listed author(s):
  • Dufour, Jean-Marie
  • Taamouti, Abderrahim

The concept of causality introduced by Wiener [Wiener, N., 1956. The theory of prediction, In: E.F. Beckenback, ed., The Theory of Prediction, McGraw-Hill, New York (Chapter 8)] and Granger [Granger, C. W.J., 1969. Investigating causal relations by econometric models and cross-spectral methods, Econometrica 37, 424-459] is defined in terms of predictability one period ahead. This concept can be generalized by considering causality at any given horizon h as well as tests for the corresponding non-causality [Dufour, J.-M., Renault, E., 1998. Short-run and long-run causality in time series: Theory. Econometrica 66, 1099-1125; Dufour, J.-M., Pelletier, D., Renault, É., 2006. Short run and long run causality in time series: Inference, Journal of Econometrics 132 (2), 337-362]. Instead of tests for non-causality at a given horizon, we study the problem of measuring causality between two vector processes. Existing causality measures have been defined only for the horizon 1, and they fail to capture indirect causality. We propose generalizations to any horizon h of the measures introduced by Geweke [Geweke, J., 1982. Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association 77, 304-313]. Nonparametric and parametric measures of unidirectional causality and instantaneous effects are considered. On noting that the causality measures typically involve complex functions of model parameters in VAR and VARMA models, we propose a simple simulation-based method to evaluate these measures for any VARMA model. We also describe asymptotically valid nonparametric confidence intervals, based on a bootstrap technique. Finally, the proposed measures are applied to study causality relations at different horizons between macroeconomic, monetary and financial variables in the US.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00149-3
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 154 (2010)
Issue (Month): 1 (January)
Pages: 42-58

as
in new window

Handle: RePEc:eee:econom:v:154:y:2010:i:1:p:42-58
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Deirdre N. McCloskey & Stephen T. Ziliak, 1996. "The Standard Error of Regressions," Journal of Economic Literature, American Economic Association, vol. 34(1), pages 97-114, March.
  2. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, Oxford University Press, vol. 113(3), pages 869-902.
  3. Peter N. Ireland, 2005. "The Monetary Transmission Mechanism," Boston College Working Papers in Economics 628, Boston College Department of Economics.
  4. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
  5. Gourieroux,Christian & Monfort,Alain, 1997. "Time Series and Dynamic Models," Cambridge Books, Cambridge University Press, number 9780521423083, March.
  6. K. D. Patterson, 2007. "Bias Reduction through First-order Mean Correction, Bootstrapping and Recursive Mean Adjustment," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-45.
  7. Kapetanios, G. & Pagan, A. & Scott, A., 2007. "Making a match: Combining theory and evidence in policy-oriented macroeconomic modeling," Journal of Econometrics, Elsevier, vol. 136(2), pages 565-594, February.
  8. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
  9. DUFOUR, Jean-Marie & JOUINI, Tarek, 2005. "Asymptotic Distribution of a Simple Linear Estimator for VARMA Models in Echelon Form," Cahiers de recherche 10-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  10. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
  11. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
  12. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
  13. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
  14. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144 Elsevier.
  15. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
  16. Boudjellaba, B. & Dufour, J.-M. & Roy, R., 1991. "Testing Causality Between Two Vextors in Multivariate Arma Models," Cahiers de recherche 9119, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  17. Francis X. Diebold & Lutz Kilian, 2001. "Measuring predictability: theory and macroeconomic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
  18. David A. Pierce & Larry D. Haugh, 1977. "Causality in temporal systems: characterizations and a survey," Special Studies Papers 87, Board of Governors of the Federal Reserve System (U.S.).
  19. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
  20. Hsiao, Cheng, 1982. "Autoregressive modeling and causal ordering of economic variables," Journal of Economic Dynamics and Control, Elsevier, vol. 4(1), pages 243-259, November.
  21. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
  22. repec:wop:ubisop:0088 is not listed on IDEAS
  23. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
  24. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:154:y:2010:i:1:p:42-58. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.