IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2005s-06.html
   My bibliography  Save this paper

Asymptotic distribution of a simple linear estimator for VARMA models in echelon form

Author

Listed:
  • Jean-Marie Dufour
  • Tarek Jouini

Abstract

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed. Dans cet article, nous étudions la distribution asymptotique d'un estimateur linéaire simple en deux étapes (de type Hannan-Rissanen) pour un processus vectoriel autorégressif-moyenne-mobile (VARMA) stationnaire et inversible, formulé sous la forme échelon. Nous donnons des conditions générales qui assurent la convergence et la normalité asymptotique de l'estimateur. Nous fournissons aussi un estimateur convergent de la matrice de covariance asymptotique de l'estimateur, ce qui permet de construire facilement des tests et des intervalles de confiance.

Suggested Citation

  • Jean-Marie Dufour & Tarek Jouini, 2005. "Asymptotic distribution of a simple linear estimator for VARMA models in echelon form," CIRANO Working Papers 2005s-06, CIRANO.
  • Handle: RePEc:cir:cirwor:2005s-06
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/2005s-06.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Melard, Guy & Roy, Roch & Saidi, Abdessamad, 2006. "Exact maximum likelihood estimation of structured or unit root multivariate time series models," Computational Statistics & Data Analysis, Elsevier, pages 2958-2986.
    2. D. Poskitt & H. Lütkepohl, 1995. "Consistent Specification of Cointegrated Autoregressive Moving-Average Systems," SFB 373 Discussion Papers 1995,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Lutkepohl, Helmut & Claessen, Holger, 1997. "Analysis of cointegrated VARMA processes," Journal of Econometrics, Elsevier, vol. 80(2), pages 223-239, October.
    4. Hannan, E J, 1976. "The Identification and Parameterization of ARMAX and State Space Forms," Econometrica, Econometric Society, vol. 44(4), pages 713-723, July.
    5. Deistler, M. & Hannan, E. J., 1981. "Some properties of the parameterization of ARMA systems with unknown order," Journal of Multivariate Analysis, Elsevier, vol. 11(4), pages 474-484, December.
    6. Holger Bartel & Helmut Lutkepohl, 1998. "Estimating the Kronecker indices of cointegrated echelon-form VARMA models," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 76-99.
    7. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
    8. Boudjellaba, B. & Dufour, J.-M. & Roy, R., 1991. "Testing Causality Between Two Vextors in Multivariate Arma Models," Cahiers de recherche 9119, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Koreisha, Sergio G & Pukkila, Tarmo, 1995. "A Comparison between Different Order-Determination Criteria for Identification of ARIMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 127-131, January.
    10. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    11. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    12. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    13. Tsay, Ruey S, 1989. "Parsimonious Parameterization of Vector Autoregressive Moving Average Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 327-341, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    2. Jean-Marie Dufour & Tarek Jouini, 2011. "Asymptotic Distributions for Some Quasi-Efficient Estimators in Echelon VARMA Models," CIRANO Working Papers 2011s-25, CIRANO.
    3. Dufour, Jean-Marie & Jouini, Tarek, 2014. "Asymptotic distributions for quasi-efficient estimators in echelon VARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 69-86.
    4. Melard, Guy & Roy, Roch & Saidi, Abdessamad, 2006. "Exact maximum likelihood estimation of structured or unit root multivariate time series models," Computational Statistics & Data Analysis, Elsevier, pages 2958-2986.
    5. repec:eee:ecolet:v:157:y:2017:i:c:p:129-132 is not listed on IDEAS
    6. repec:eee:econom:v:202:y:2018:i:1:p:75-91 is not listed on IDEAS

    More about this item

    Keywords

    time series; VARMA; stationary; invertible; echelon form; estimation; asymptotic normality; bootstrap; Hannan-Rissanen; séries chronologiques; VARMA; stationnaire; inversible; forme échelon; estimation; normalité asymptotique; bootstrap; Hannan-Rissanen;

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2005s-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.