IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v73y1997i1p351-366.html
   My bibliography  Save this article

La causalité entre la monnaie et le revenu : une analyse fondée sur un modèle VARMA-échelon

Author

Listed:
  • Dufour, Jean-Marie

    (Département de sciences économiques, Université de Montréal)

  • Tessier, David

    (Département des Relations Internationales, Banque du Canada)

Abstract

Causality analysis in the sense of Wiener-Granger are usually based on a vector autoregressive (VAR) specification of the data-generating process. This is the case in particular for the numerous studies of causality between money and income in macro-economics. Since a VAR specification is typically only approximate and, most importantly, is not robust to disaggregation into subvectors, we study here causality between money and income using the more general and logically coherent framework of vector ARMA models (VARMA). To solve the identification problems associated with such models, we consider a VARMA model in echelon form, which is automatically identified. To specify the orders of the model, we use the new methodology proposed by Nsiri and Roy (1992, 1996) which is based on estimating the Kronecker indices of the model. This approach is applied to a five-variable model of the U.S. economy, containing: real income, the price level, a short-term interest rate, the monetary base and the M1 multiplier. Contrary to earlier studies, we find that monetary variables (base and multiplier) cause income (in the sense of Granger), causality being unidirectional causality in the case of the base, while the interest rate does not cause income directly but may have an indirect effect through monetary variables. The price level appears to be a passive variable with no influence on the other variables of the system. Les analyses de causalité, au sens de Wiener-Granger, sont habituellement fondées sur une spécification autorégressive (VAR) du processus générateur des données. C’est le cas, en particulier, pour les nombreuses études de causalité entre la monnaie et le revenu au niveau macroéconomique. Comme la spécification VAR ne constitue qu’une approximation et surtout n’est pas robuste à la désagrégation en sous-vecteurs, nous étudions ici la causalité entre monnaie et revenu à partir du cadre plus général et logiquement cohérent des modèles ARMA multivariés (VARMA). Pour résoudre les problèmes d’identification associés à ces modèles, nous considérons un modèle VARMA sous la forme échelon, lequel fournit automatiquement un modèle identifié. Nous utilisons, pour spécifier les ordres du modèle, la nouvelle méthodologie proposée par Nsiri et Roy (1992, 1996) et fondée sur une estimation des indices de Kronecker du modèle. Cette approche est appliquée à un modèle de l’économie américaine comprenant cinq variables : le revenu réel, le niveau des prix, un taux d’intérêt à court terme, la base monétaire et le multiplicateur de M1. Contrairement à certaines études antérieures, nous trouvons que les variables monétaires (base et multiplicateur) causent le revenu (au sens de Granger), la relation étant unidirectionnelle dans le cas de la base, tandis que le taux d’intérêt ne cause pas directement le revenu, mais a possiblement un effet indirect passant par les variables monétaires. Le niveau des prix apparaît comme une variable passive sans influence sur les autres variables du système.

Suggested Citation

  • Dufour, Jean-Marie & Tessier, David, 1997. "La causalité entre la monnaie et le revenu : une analyse fondée sur un modèle VARMA-échelon," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 351-366, mars-juin.
  • Handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:351-366
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/602232ar
    Download Restriction: no

    References listed on IDEAS

    as
    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    3. Nsiri, Saïd & Roy, Roch, 1996. "Identification of Refined ARMA Echelon Form Models for Multivariate Time Series," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 207-231, February.
    4. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    5. Lütkepohl, Helmut & POSKITT, D.S., 1996. "Testing for Causation Using Infinite Order Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(01), pages 61-87, March.
    6. Eberts, R W & Steece, B M, 1984. "A Test for Granger-Causality in a Multivariate ARMA Model," Empirical Economics, Springer, vol. 9(1), pages 51-58.
    7. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    8. Guilkey, David K & Salemi, Michael K, 1982. "Small Sample Properties of Three Tests for Granger-Causal Ordering in a Bivariate Stochastic System," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 668-680, November.
    9. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
    10. Feige, Edgar L & Pearce, Douglas K, 1979. "The Casual Causal Relationship between Money and Income: Some Caveats for Time Series Analysis," The Review of Economics and Statistics, MIT Press, vol. 61(4), pages 521-533, November.
    11. Boudjellaba, B. & Dufour, J.-M. & Roy, R., 1991. "Testing Causality Between Two Vextors in Multivariate Arma Models," Cahiers de recherche 9119, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. Christiano, Lawrence J. & Ljungqvist, Lars, 1988. "Money does Granger-cause output in the bivariate money-output relation," Journal of Monetary Economics, Elsevier, vol. 22(2), pages 217-235, September.
    13. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    14. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Geweke, John & Meese, Richard & Dent, Warren, 1983. "Comparing alternative tests of causality in temporal systems : Analytic results and experimental evidence," Journal of Econometrics, Elsevier, vol. 21(2), pages 161-194, February.
    17. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    18. Dufour, Jean-Marie & Tessier, David, 1993. "On the relationship between impulse response analysis, innovation accounting and Granger causality," Economics Letters, Elsevier, vol. 42(4), pages 327-333.
    19. Thoma, Mark A., 1994. "Subsample instability and asymmetries in money-income causality," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 279-306.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:351-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bruce Shearer). General contact details of provider: http://edirc.repec.org/data/scseeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.