IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v73y1997i1p351-366.html
   My bibliography  Save this article

La causalité entre la monnaie et le revenu : une analyse fondée sur un modèle VARMA-échelon

Author

Listed:
  • Dufour, Jean-Marie

    (Département de sciences économiques, Université de Montréal)

  • Tessier, David

    (Département des Relations Internationales, Banque du Canada)

Abstract

Causality analysis in the sense of Wiener-Granger are usually based on a vector autoregressive (VAR) specification of the data-generating process. This is the case in particular for the numerous studies of causality between money and income in macro-economics. Since a VAR specification is typically only approximate and, most importantly, is not robust to disaggregation into subvectors, we study here causality between money and income using the more general and logically coherent framework of vector ARMA models (VARMA). To solve the identification problems associated with such models, we consider a VARMA model in echelon form, which is automatically identified. To specify the orders of the model, we use the new methodology proposed by Nsiri and Roy (1992, 1996) which is based on estimating the Kronecker indices of the model. This approach is applied to a five-variable model of the U.S. economy, containing: real income, the price level, a short-term interest rate, the monetary base and the M1 multiplier. Contrary to earlier studies, we find that monetary variables (base and multiplier) cause income (in the sense of Granger), causality being unidirectional causality in the case of the base, while the interest rate does not cause income directly but may have an indirect effect through monetary variables. The price level appears to be a passive variable with no influence on the other variables of the system. Les analyses de causalité, au sens de Wiener-Granger, sont habituellement fondées sur une spécification autorégressive (VAR) du processus générateur des données. C’est le cas, en particulier, pour les nombreuses études de causalité entre la monnaie et le revenu au niveau macroéconomique. Comme la spécification VAR ne constitue qu’une approximation et surtout n’est pas robuste à la désagrégation en sous-vecteurs, nous étudions ici la causalité entre monnaie et revenu à partir du cadre plus général et logiquement cohérent des modèles ARMA multivariés (VARMA). Pour résoudre les problèmes d’identification associés à ces modèles, nous considérons un modèle VARMA sous la forme échelon, lequel fournit automatiquement un modèle identifié. Nous utilisons, pour spécifier les ordres du modèle, la nouvelle méthodologie proposée par Nsiri et Roy (1992, 1996) et fondée sur une estimation des indices de Kronecker du modèle. Cette approche est appliquée à un modèle de l’économie américaine comprenant cinq variables : le revenu réel, le niveau des prix, un taux d’intérêt à court terme, la base monétaire et le multiplicateur de M1. Contrairement à certaines études antérieures, nous trouvons que les variables monétaires (base et multiplicateur) causent le revenu (au sens de Granger), la relation étant unidirectionnelle dans le cas de la base, tandis que le taux d’intérêt ne cause pas directement le revenu, mais a possiblement un effet indirect passant par les variables monétaires. Le niveau des prix apparaît comme une variable passive sans influence sur les autres variables du système.

Suggested Citation

  • Dufour, Jean-Marie & Tessier, David, 1997. "La causalité entre la monnaie et le revenu : une analyse fondée sur un modèle VARMA-échelon," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 351-366, mars-juin.
  • Handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:351-366
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/602232ar
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    3. Nsiri, Saïd & Roy, Roch, 1996. "Identification of Refined ARMA Echelon Form Models for Multivariate Time Series," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 207-231, February.
    4. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
    5. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    6. Lütkepohl, Helmut & POSKITT, D.S., 1996. "Testing for Causation Using Infinite Order Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(1), pages 61-87, March.
    7. Eberts, R W & Steece, B M, 1984. "A Test for Granger-Causality in a Multivariate ARMA Model," Empirical Economics, Springer, vol. 9(1), pages 51-58.
    8. Sims, Christopher A, 1980. "Comparison of Interwar and Postwar Business Cycles: Monetarism Reconsidered," American Economic Review, American Economic Association, vol. 70(2), pages 250-257, May.
    9. Guilkey, David K & Salemi, Michael K, 1982. "Small Sample Properties of Three Tests for Granger-Causal Ordering in a Bivariate Stochastic System," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 668-680, November.
    10. Boudjellaba, Hafida & Dufour, Jean-Marie & Roy, Roch, 1994. "Simplified conditions for noncausality between vectors in multivariate ARMA models," Journal of Econometrics, Elsevier, vol. 63(1), pages 271-287, July.
    11. Feige, Edgar L & Pearce, Douglas K, 1979. "The Casual Causal Relationship between Money and Income: Some Caveats for Time Series Analysis," The Review of Economics and Statistics, MIT Press, vol. 61(4), pages 521-533, November.
    12. Boudjellaba, B. & Dufour, J.-M. & Roy, R., 1991. "Testing Causality Between Two Vextors in Multivariate Arma Models," Cahiers de recherche 9119, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    13. Christiano, Lawrence J. & Ljungqvist, Lars, 1988. "Money does Granger-cause output in the bivariate money-output relation," Journal of Monetary Economics, Elsevier, vol. 22(2), pages 217-235, September.
    14. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Geweke, John & Meese, Richard & Dent, Warren, 1983. "Comparing alternative tests of causality in temporal systems : Analytic results and experimental evidence," Journal of Econometrics, Elsevier, vol. 21(2), pages 161-194, February.
    17. Lutkepohl, Helmut & Poskitt, D S, 1996. "Specification of Echelon-Form VARMA Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 69-79, January.
    18. Dufour, Jean-Marie & Tessier, David, 1993. "On the relationship between impulse response analysis, innovation accounting and Granger causality," Economics Letters, Elsevier, vol. 42(4), pages 327-333.
    19. Thoma, Mark A., 1994. "Subsample instability and asymmetries in money-income causality," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 279-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.
    2. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, September.
    3. Bernd Hayo, 1999. "Money-output Granger causality revisited: an empirical analysis of EU countries," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1489-1501.
    4. Jonathan B. Hill, 2004. "Causation Delays and Causal Neutralization for General Horizons: The Money-Output Relationship Revisited," Econometrics 0402002, University Library of Munich, Germany, revised 23 Mar 2005.
    5. Masih, Abul M. M. & Masih, Rumi, 1996. "Empirical tests to discern the dynamic causal chain in macroeconomic activity: new evidence from Thailand and Malaysia based on a multivariate cointegration/vector error-correction modeling approach," Journal of Policy Modeling, Elsevier, vol. 18(5), pages 531-560, October.
    6. Masih, Rumi & Masih, Abul M. M., 1996. "Macroeconomic activity dynamics and Granger causality: New evidence from a small developing economy based on a vector error-correction modelling analysis," Economic Modelling, Elsevier, vol. 13(3), pages 407-426, July.
    7. Ericsson, Neil R & Hendry, David F & Mizon, Grayham E, 1998. "Exogeneity, Cointegration, and Economic Policy Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(4), pages 370-387, October.
    8. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    9. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    10. Wang, Xia & Zheng, Tingguo & Zhu, Yanli, 2014. "Money–output Granger causal dynamics in China," Economic Modelling, Elsevier, vol. 43(C), pages 192-200.
    11. Hendry, David F. & Mizon, Grayham E., 2001. "Reformulating empirical macro-econometric modelling," Discussion Paper Series In Economics And Econometrics 104, Economics Division, School of Social Sciences, University of Southampton.
    12. Christophe Kamps, 2005. "The Dynamic Effects of Public Capital: VAR Evidence for 22 OECD Countries," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 12(4), pages 533-558, August.
    13. Kim, Jin-Ock, 1990. "A time series analysis of the real exchange rate movement in Korea," ISU General Staff Papers 1990010108000010378, Iowa State University, Department of Economics.
    14. Troug, Haytem & Murray, Matt, 2015. "The Effects of Asymmetric Shocks in Oil Prices on the Performance of the Libyan Economy," MPRA Paper 68705, University Library of Munich, Germany.
    15. Jin, Jang C., 2006. "Openness, growth, and inflation: Evidence from South Korea before the economic crisis," Journal of Asian Economics, Elsevier, vol. 17(4), pages 738-757, October.
    16. Mohammad Reza Farzanegan, 2014. "Military Spending and Economic Growth: The Case of Iran," Defence and Peace Economics, Taylor & Francis Journals, vol. 25(3), pages 247-269, June.
    17. Farzanegan, Mohammad Reza & Markwardt, Gunther, 2009. "The effects of oil price shocks on the Iranian economy," Energy Economics, Elsevier, vol. 31(1), pages 134-151, January.
    18. Glass, Anthony, 2009. "Government expenditure on public order and safety, economic growth and private investment: Empirical evidence from the United States," International Review of Law and Economics, Elsevier, vol. 29(1), pages 29-37, March.
    19. Dagher, Leila & El Hariri, Sadika, 2013. "The impact of global oil price shocks on the Lebanese stock market," Energy, Elsevier, vol. 63(C), pages 366-374.
    20. Hendry, David F. & Mizon, Grayham E., 2001. "Reformulating empirical macro-econometric modelling," Discussion Paper Series In Economics And Econometrics 0104, Economics Division, School of Social Sciences, University of Southampton.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:351-366. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.